Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gynecol Oncol ; 160(2): 427-437, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33229044

RESUMO

OBJECTIVES: Mouse models of ovarian cancer commonly transfer large numbers of tumor cells into the peritoneal cavity to establish experimental metastatic disease, which may not adequately model early metastatic spread from a primary tumor site. We hypothesized we could develop an ovarian cancer model that predictably represents micro-metastatic disease. METHODS: Murine ID8VEGF ovarian cancer cells were transduced to express enhanced luciferase (eLuc) to enable intravital detection of microscopic disease burden and injected beneath the ovarian bursa of C57Bl/6 mice. At 6 or 10 weeks after orthotopic injection, when mice had detectable metastases, hysterectomy and bilateral salpingo-oophorectomy was performed to remove all macroscopic disease, and survival monitored. Immunohistochemistry and gene expression profiling were performed on primary and metastatic tumors. RESULTS: eLuc-transduced ID8VEGF cells were brighter than cells transduced with standard luciferase, enabling in vivo visualization of microscopic intra-abdominal metastases developing after orthotopic injection. Primary surgical cytoreduction removed the primary tumor mass but left minimal residual disease in all mice. Metastatic sites that developed following orthotopic injection were similar to metastatic human ovarian cancer sites. Gene expression and immune infiltration were similar between primary and metastatic mouse tumors. Surgical cytoreduction prolonged survival compared to no surgery, with earlier cytoreduction more beneficial than delayed, despite micro-metastatic disease in both settings. CONCLUSIONS: Mice with primary ovarian tumors established through orthotopic injection develop progressively fatal metastatic ovarian cancer, and benefit from surgical cytoreduction to remove bulky disease. This model enables the analysis of therapeutic regimens designed to target and potentially eradicate established minimal residual disease.


Assuntos
Procedimentos Cirúrgicos de Citorredução , Modelos Animais de Doenças , Micrometástase de Neoplasia/terapia , Neoplasias Ovarianas/cirurgia , Neoplasias Peritoneais/cirurgia , Animais , Linhagem Celular Tumoral/transplante , Feminino , Humanos , Histerectomia , Camundongos , Neoplasia Residual , Neoplasias Ovarianas/patologia , Ovário/patologia , Ovário/cirurgia , Cavidade Peritoneal/patologia , Cavidade Peritoneal/cirurgia , Neoplasias Peritoneais/secundário , Salpingo-Ooforectomia , Carga Tumoral
2.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264436

RESUMO

BACKGROUND: In the USA, more than 50% of patients with ovarian cancer die within 5 years of diagnosis, highlighting the need for therapeutic innovations. Mesothelin (MSLN) is a candidate immunotherapy target; it is overexpressed by ovarian tumors and contributes to malignant/invasive phenotypes, making tumor antigen loss disadvantageous. We previously showed that MSLN-specific T cell receptor (TCR)-engineered T cells preferentially accumulate within established tumors, delay tumor growth, and significantly prolong survival in the ID8VEGF mouse model that replicates many aspects of human disease. However, T cell persistence and antitumor activity were not sustained. We therefore focused on Fas/FasL signaling that can induce activation-induced cell death, an apoptotic mechanism that regulates T cell expansion. Upregulation of FasL by tumor cells and tumor vasculature has been detected in the tumor microenvironment (TME) of human and murine ovarian cancers, can induce apoptosis in infiltrating, Fas (CD95) receptor-expressing lymphocytes, and can protect ovarian cancers from tumor-infiltrating lymphocytes. METHODS: To overcome potential FasL-mediated immune evasion and enhance T cell responses, we generated an immunomodulatory fusion protein (IFP) containing the Fas extracellular binding domain fused to a 4-1BB co-stimulatory domain, rather than the natural death domain. Murine T cells were engineered to express an MSLN-specific TCR (TCR1045), alone or with the IFP, transferred into ID8VEGF tumor-bearing mice and evaluated for persistence, proliferation, cytokine production and efficacy. Human T cells were similarly engineered to express an MSLN-specific TCR (TCR530) alone or with a truncated Fas receptor or a Fas-4-1BB IFP and evaluated for cytokine production and tumor lysis. RESULTS: Relative to murine T cells expressing only TCR1045, T cells expressing both TCR1045 and a Fas-4-1BB IFP preferentially persisted in the TME of tumor-bearing mice, with improved T cell proliferation and survival. Moreover, TCR1045/IFP+ T cells significantly prolonged survival in tumor-bearing mice, compared with TCR1045-only T cells. Human T cells expressing TCR530 and a Fas-4-1BB IFP exhibit enhanced functional activity and viability compared with cells with only TCR530. CONCLUSIONS: As many ovarian tumors overexpress FasL, an IFP that converts the Fas-mediated death signal into pro-survival and proliferative signals may be used to enhance engineered adoptive T cell therapy for patients.


Assuntos
Neoplasias Ovarianas , Fator A de Crescimento do Endotélio Vascular , Animais , Carcinoma Epitelial do Ovário , Terapia Baseada em Transplante de Células e Tecidos , Proteína Ligante Fas , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Receptores de Antígenos de Linfócitos T/genética , Microambiente Tumoral
3.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32860705

RESUMO

Adoptive T cell therapy (ACT) with genetically modified T cells has shown impressive results against some hematologic cancers, but efficacy in solid tumors can be limited by restrictive tumor microenvironments (TMEs). For example, Fas ligand is commonly overexpressed in TMEs and induces apoptosis in tumor-infiltrating, Fas receptor-positive lymphocytes. We engineered immunomodulatory fusion proteins (IFPs) to enhance ACT efficacy, combining an inhibitory receptor ectodomain with a costimulatory endodomain to convert negative into positive signals. We developed a Fas-4-1BB IFP that replaces the Fas intracellular tail with costimulatory 4-1BB. Fas-4-1BB IFP-engineered murine T cells exhibited increased pro-survival signaling, proliferation, antitumor function, and altered metabolism in vitro. In vivo, Fas-4-1BB ACT eradicated leukemia and significantly improved survival in the aggressive KPC pancreatic cancer model. Fas-4-1BB IFP expression also enhanced primary human T cell function in vitro. Thus, Fas-4-1BB IFP expression is a novel strategy to improve multiple T cell functions and enhance ACT against solid tumors and hematologic malignancies.


Assuntos
Imunoterapia Adotiva , Proteínas Recombinantes de Fusão/farmacologia , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Receptor fas/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Engenharia Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Fatores Imunológicos/farmacologia , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
4.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32491160

RESUMO

CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Ácidos Graxos/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Acil-CoA Desidrogenase de Cadeia Longa/biossíntese , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Linfócitos T CD8-Positivos/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Regulação para Baixo , Ácidos Graxos/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Mutantes , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
5.
Cancer Immunol Res ; 7(9): 1412-1425, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31337659

RESUMO

Adoptive T-cell therapy using high-affinity T-cell receptors (TCR) to target tumor antigens has potential for improving outcomes in high-grade serous ovarian cancer (HGSOC) patients. Ovarian tumors develop a hostile, multicomponent tumor microenvironment containing suppressive cells, inhibitory ligands, and soluble factors that facilitate evasion of antitumor immune responses. Developing and validating an immunocompetent mouse model of metastatic ovarian cancer that shares antigenic and immunosuppressive qualities of human disease would facilitate establishing effective T-cell therapies. We used deep transcriptome profiling and IHC analysis of human HGSOC tumors and disseminated mouse ID8VEGF tumors to compare immunologic features. We then evaluated the ability of CD8 T cells engineered to express a high-affinity TCR specific for mesothelin, an ovarian cancer antigen, to infiltrate advanced ID8VEGF murine ovarian tumors and control tumor growth. Human CD8 T cells engineered to target mesothelin were also evaluated for ability to kill HLA-A2+ HGSOC lines. IHC and gene-expression profiling revealed striking similarities between tumors of both species, including processing/presentation of a leading candidate target antigen, suppressive immune cell infiltration, and expression of molecules that inhibit T-cell function. Engineered T cells targeting mesothelin infiltrated mouse tumors but became progressively dysfunctional and failed to persist. Treatment with repeated doses of T cells maintained functional activity, significantly prolonging survival of mice harboring late-stage disease at treatment onset. Human CD8 T cells engineered to target mesothelin were tumoricidal for three HGSOC lines. Treatment with engineered T cells may have clinical applicability in patients with advanced-stage HGSOC.


Assuntos
Engenharia Genética , Imunoterapia Adotiva , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Expressão Gênica , Perfilação da Expressão Gênica , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Humanos , Imunofenotipagem , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Mesotelina , Camundongos , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA