RESUMO
OBJECTIVE: Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS: Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS: Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION: Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.
RESUMO
Gene variants that dysregulate signaling through the RAS-MAPK pathway cause cardiofaciocutaneous syndrome (CFCS), a rare multi-system disorder. Infantile epileptic spasms syndrome (IESS) and other forms of epilepsy are among the most serious complications. To investigate clinical presentation, treatment outcomes, and genotype-phenotype associations in CFCS patients with IESS, molecular genetics and clinical neurological history were reviewed across two large clinical research cohorts (n = 180). IESS presented in 18/180 (10%) cases, including 16 patients with BRAF variants and 2 with MAP2K1 variants. Among IESS patients with BRAF variants, 16/16 (100%) had sequence changes affecting the protein kinase domain (exons 11-16), although only 57% of total BRAF variants occurred in this domain. Clinical onset of spasms occurred at a median age of 5.4 months (range: 1-24 months). Among 13/18 patients whose IESS resolved with anti-seizure medications, 10 were treated with ACTH and/or vigabatrin. A substantial majority of CFCS patients with IESS subsequently developed other epilepsy types (16/18; 89%). In terms of neurodevelopmental outcomes, gross motor function and verbal communication were more limited in patients with a history of IESS compared to those without IESS. These findings can inform clinical neurological care guidelines for CFCS and development of relevant pre-clinical models for severe epilepsy phenotypes.
Assuntos
Epilepsia , Espasmos Infantis , Humanos , Espasmos Infantis/genética , Espasmos Infantis/complicações , Espasmos Infantis/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Epilepsia/genética , Genótipo , Síndrome , Espasmo/complicaçõesRESUMO
OBJECTIVE: Cardiofaciocutaneous syndrome (CFCS) is a rare developmental disorder caused by upregulated signaling through the RAS-mitogen-activated protein kinase (MAPK) pathway, mostly resulting from de novo activating BRAF mutations. Children with CFCS are prone to epilepsy, which is a major life-threatening complication. The aim of our study was to define the natural history of epilepsy in this syndrome and exploring genotype-phenotype correlations. METHODS: We performed an observational study, including 34 patients with molecularly confirmed diagnosis (11 males, mean age: 15.8 years). The mean follow-up period was 9.2 years. For all patients, we performed neurological examination, cognitive assessment when possible, neuroimaging, electrophysiological assessment and systematic assessment of epilepsy features. Correlation analyses were performed, taking into account gender, age of seizure onset, EEG features, degree of cognitive deficits, type of mutation, presence of non-epileptic paroxysmal events and neuroimaging features. RESULTS: Epilepsy was documented in 64% of cases, a higher prevalence compared to previous reports. Patients were classified into three groups based on their electroclinical features, long-term outcome and response to therapy. A genotype-phenotype correlation linking the presence/severity of epilepsy to the nature of the structural/functional consequences of mutations was observed, providing a stratification based on genotype to improve the clinical management of these patients.