Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500458

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.


Assuntos
Lythraceae , Staphylococcus aureus Resistente à Meticilina , Rhizophoraceae , Antioxidantes/farmacologia , Antioxidantes/análise , Staphylococcus aureus , Etanol/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem , Folhas de Planta/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Flavonoides/farmacologia , Flavonoides/análise , Fenóis/farmacologia , Fenóis/análise , Antibacterianos/química
2.
FEMS Yeast Res ; 20(3)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32175559

RESUMO

Investigations into the potential for pharmacological inhibition of the aging process and the onset of age-related disease are increasingly garnering attention. Here, we analyzed the antiaging properties of natural compounds derived from several marine bacteria in vitro and in vivo using the fission yeast Schizosaccharomyces pombe. The Pseudoalteromonas flavipulchra STILL-33 extract exhibited high antioxidant and antiglycation activities in vitro. We then characterized two antioxidant active fractions isolated from this extract. In addition, we showed that the P. flavipulchra STILL-33 extract or either of its two active fractions (Fractions 1 and 2) could extend the longevity of fission yeast. Moreover, the particular extract and two active fractions were found to induce mitochondrial activity and to delay the G1 phase of the fission yeast cell cycle, perhaps by improving the aging process. The P. flavipulchra STILL-33 extract and Fraction 1 also increased the expression of the catalase-encoding ctt1+ gene and thereby decreased the reactive oxygen species level. Structural analysis showed that Fraction 1 was dominated by l-arginine and ipriflavone, and we showed indeed that the two corresponding commercial products increase the fission yeast lifespan. As for Fraction 2 was identified as the putative structure of butamben. Together, these results should facilitate the discovery of additional antiaging compounds from P. flavipulchra and ultimately the development of novel antiaging compounds for pharmaceutical use.


Assuntos
Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Pseudoalteromonas/química , Schizosaccharomyces/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio , Fatores de Tempo
3.
Mol Biol Rep ; 47(1): 33-43, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31612412

RESUMO

Aging is a degenerative process characterized by progressive deterioration of cellular components, ultimately resulting in mortality, in which massive accumulation of reactive oxygen species (ROS) and advanced glycation end products (AGEs) are implicated as crucial factors. At the same time, natural products are rich sources from which to isolate and characterize potential anti-aging compounds. The current study was designed to extract compounds from the marine bacterium Pseudomonas sp. and investigate their in vitro antioxidant and anti-glycation activities, as well as their in vivo effects on aging in the model organism Schizosaccharomyces pombe. In vitro assays showed that a Pseudomonas sp. PTR-08 extract exhibited the best antioxidant and anti-glycation activities. Further, direct administration of the extract significantly increased yeast longevity, accompanied by induction of the yeast oxidative stress response. Molecular analyses indicated that selected extract dramatically up-regulated the expression of pap1+, which encodes the transcriptional factor Pap1 and ctt1+, which encodes catalase, following H2O2 treatment. In line with these results, catalase activity significantly increased, leading to a decrease in intracellular ROS. In addition, this extract may delay the G1 phase of the yeast cell cycle, leading to an extended lifespan. Moreover, our findings indicated that the extract contains pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-, which substantially promotes anti-aging activity in yeast. However, further research must be conducted to better understand the role of this compound in our system.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Pseudomonas/química , Schizosaccharomyces/efeitos dos fármacos , Organismos Aquáticos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Catalase/genética , Catalase/metabolismo , Ciclo Celular/genética , Avaliação Pré-Clínica de Medicamentos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Longevidade/genética , Organismos Geneticamente Modificados , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Biosci Biotechnol Biochem ; 84(3): 598-605, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31724491

RESUMO

Red kidney beans (Phaseolus vulgaris L.) contain bioactive compounds that are known to exhibit antidiabetic effects via inhibition of α-glucosidase. However, information on the nonpolar components that exhibit antidiabetic activity is limited. Here, we report the isolation and structure determination of components with α-glucosidase inhibitory activity, which were obtained from the hexane extract of red kidney beans. Triacylglycerols (TAGs) were identified as the major components exhibiting inhibitory activity against α-glucosidase. The chemical structure of TAGs was determined by a combination of GC-MS and UPLC-MS/MS. The primary TAGs identified were LnLnLn (trilinolenin) and LnLLn (1,3-dilinolenoyl-2-linoleoyl glycerol). The major fatty acids present in these TAGs were α-linolenic acid (ω-3) and linoleic acid (ω-6). These TAGs were also found to inhibit the α-glucosidase activity in a similar fashion as acarbose. These results suggest that TAGs have potency as antidiabetics and support the potential suitability of red kidney beans for diabetes treatment.


Assuntos
Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Hexanos/química , Phaseolus/química , Triglicerídeos/isolamento & purificação , Cromatografia Líquida/métodos , Diabetes Mellitus/tratamento farmacológico , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Estrutura Molecular , Espectrometria de Massas em Tandem , Triglicerídeos/química
5.
Molecules ; 25(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471071

RESUMO

Although the intake of jack bean (Canavalia ensiformis (L.) DC.), an underutilized tropical legume, can potentially decrease the risk of several chronic diseases, not much effort has been directed at profiling the polyphenolics contained therein. Hence, this work aimed to identify and quantify the dominant jack bean polyphenolics, which are believed to have antioxidant and other bioactivities. Four major compounds were detected and identified as kaempferol glycosides with three or four glycoside units. Their structures were established based on UV-visible, 1d, 2D NMR, and HR-ESI-MS analyses. Specifically, kaempferol 3-O-a-l-rhamnopyranosyl (1®6)- b-d-glucopyranosyl (1®2)-b-d-galactopyranosyl-7-O-[3-O-o-anisoyl]-a-l-rhamnopyranoside was detected for the first time, while the other three compounds have already been described in plants other than jack bean. This new compound was found to have a higher a-glucosidase inhibition activity compared to acarbose.


Assuntos
Canavalia/química , Glucosidases/antagonistas & inibidores , Glicosídeos/química , Flavonóis/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
6.
BMC Bioinformatics ; 17(1): 520, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927171

RESUMO

BACKGROUND: The binary similarity and dissimilarity measures have critical roles in the processing of data consisting of binary vectors in various fields including bioinformatics and chemometrics. These metrics express the similarity and dissimilarity values between two binary vectors in terms of the positive matches, absence mismatches or negative matches. To our knowledge, there is no published work presenting a systematic way of finding an appropriate equation to measure binary similarity that performs well for certain data type or application. A proper method to select a suitable binary similarity or dissimilarity measure is needed to obtain better classification results. RESULTS: In this study, we proposed a novel approach to select binary similarity and dissimilarity measures. We collected 79 binary similarity and dissimilarity equations by extensive literature search and implemented those equations as an R package called bmeasures. We applied these metrics to quantify the similarity and dissimilarity between herbal medicine formulas belonging to the Indonesian Jamu and Japanese Kampo separately. We assessed the capability of binary equations to classify herbal medicine pairs into match and mismatch efficacies based on their similarity or dissimilarity coefficients using the Receiver Operating Characteristic (ROC) curve analysis. According to the area under the ROC curve results, we found Indonesian Jamu and Japanese Kampo datasets obtained different ranking of binary similarity and dissimilarity measures. Out of all the equations, the Forbes-2 similarity and the Variant of Correlation similarity measures are recommended for studying the relationship between Jamu formulas and Kampo formulas, respectively. CONCLUSIONS: The selection of binary similarity and dissimilarity measures for multivariate analysis is data dependent. The proposed method can be used to find the most suitable binary similarity and dissimilarity equation wisely for a particular data. Our finding suggests that all four types of matching quantities in the Operational Taxonomic Unit (OTU) table are important to calculate the similarity and dissimilarity coefficients between herbal medicine formulas. Also, the binary similarity and dissimilarity measures that include the negative match quantity d achieve better capability to separate herbal medicine pairs compared to equations that exclude d.


Assuntos
Plantas Medicinais/classificação , Análise por Conglomerados , Medicina Herbária/métodos , Indonésia , Japão , Curva ROC
7.
Bioorg Med Chem ; 22(3): 937-44, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24433966

RESUMO

4'-O-ß-d-Glucopyranosyl-quercetin-3-O-ß-d-glucopyranosyl-(1→4)-ß-d-glucopyra-noside (3) was isolated from Helminthostachys zeylanica root extract as a melanogenesis acceleration compound and was synthesized using rutin as the starting material. Related compounds were also synthesized to understand the structure-activity relationships in melanin biosynthesis. Melanogenesis activities of the glycosides were determined by measuring intracellular melanin content in B16 melanoma cells. Among the synthesized quercetin glycosides, quercetin-3-O-ß-d-glucopyranoside (1), quercetin-3-O-ß-d-glucopyranosyl-(1→4)-ß-d-glucopyranoside (2), and 3 showed more potent intracellular melanogenesis acceleration activities than theophyline used as positive control in a dose-dependent manner with no cytotoxic effect.


Assuntos
Celobiose/análogos & derivados , Glucosídeos/síntese química , Glucosídeos/farmacologia , Melanoma Experimental/tratamento farmacológico , Quercetina/análogos & derivados , Quercetina/química , Animais , Sequência de Carboidratos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Celobiose/síntese química , Celobiose/química , Celobiose/farmacologia , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Gleiquênias/química , Glucosídeos/química , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Camundongos , Dados de Sequência Molecular , Estrutura Molecular , Raízes de Plantas/química , Quercetina/síntese química , Quercetina/farmacologia , Relação Estrutura-Atividade
8.
Fitoterapia ; 172: 105757, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008129

RESUMO

Dragon's blood is a red resin obtained from different plants and is considered highly efficacious and used in medicine owing its wound healing function. Two new compounds (7 and 8) were isolated from the dragon's blood of Daemonorops draco fruits, along with eight known compounds (1-6, 9, and 10). Their structures, including their absolute configurations, were elucidated by nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and electronic circular dichroism (ECD) analysis. According to the spectroscopic data, 8 was determined to be a quinone methide derivative of flavan and 7 was deduced to be a flavan trimer. All compounds were evaluated for their anti-osteoclastogenesis activity, compound 1 and 7 exhibited anti-osteoclastogenesis activity with IC50 values of 31.3 and 36.8 µM, respectively.


Assuntos
Calamus , Osteogênese , Extratos Vegetais , Estrutura Molecular , Extratos Vegetais/química , Plantas/química , Espectroscopia de Ressonância Magnética
9.
Int J Biol Macromol ; 260(Pt 1): 129458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232871

RESUMO

Kappa-carrageenan is one of the most traded marine-derived hydrocolloids used in the food-and-beverage, pharmaceuticals, and personal care/cosmetics industries. K. alvarezii (previously known as Kappaphycus alvarezii) is arguably the most important natural producer based on annual production size and near-homogeneity of the product (i.e., primarily being the kappa-type). The anticipated expansion of the kappa-carrageenan market in the coming years could easily generate >100,000 MT of residual K. alvarezii biomass per year, which, if left untreated, can severely affect the environment and economy of the surrounding area. Among several possible valorization routes, turning the biomass residue into anti-photoaging cosmetic ingredients could potentially be the most sustainable one. Not only optimizing the profit (thus better ensuring economic sustainability) relative to the biofuels- and animal feed-routes, the action could also promote environmental sustainability. It could reduce the dependency of the current cosmetic industry on both petrochemicals and terrestrial plant-derived bioactive compounds. Note how, in contrast to terrestrial agriculture, industrial cultivation of seaweeds does not require arable land, freshwater, fertilizers, and pesticides. The valorization mode could also facilitate the sequestration of more greenhouse gas CO2 as daily-used chemicals, since the aerial productivity of seaweeds is much higher than that of terrestrial plants. This review first summarizes any scientific evidence that K. alvarezii extracts possess anti-photoaging properties. Next, realizing that conventional extraction methods may prevent the use of such extracts in cosmetic formulations, this review discusses the feasibility of obtaining various K. alvarezii compounds using green methods. Lastly, a perspective on several potential challenges to the proposed valorization scheme, as well as the potential solutions, is offered.


Assuntos
Algas Comestíveis , Rodófitas , Alga Marinha , Animais , Carragenina/química , Rodófitas/química , Alga Marinha/química
10.
Sci Rep ; 14(1): 4694, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409331

RESUMO

Community detection recognizes groups of densely connected nodes across networks, one of the fundamental procedures in network analysis. This research boosts the standard but locally optimized Greedy Modularity algorithm for community detection. We introduce innovative exploration techniques that include a variety of node and community disassembly strategies. These strategies include methods like non-triad creating, feeble, random as well as inadequate embeddedness for nodes, as well as low internal edge density, low triad participation ratio, weak, low conductance as well as random tactics for communities. We present a methodology that showcases the improvement in modularity across the wide variety of real-world and synthetic networks over the standard approaches. A detailed comparison against other well-known community detection algorithms further illustrates the better performance of our improved method. This study not only optimizes the process of community detection but also broadens the scope for a more nuanced and effective network analysis that may pave the way for more insights as to the dynamism and structures of its functioning by effectively addressing and overcoming the limitations that are inherently attached with the existing community detection algorithms.

11.
Pharmacol Rep ; 76(2): 287-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526651

RESUMO

Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.


Assuntos
Antineoplásicos , Ginsenosídeos , Neoplasias , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
12.
Heliyon ; 9(5): e15533, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37159693

RESUMO

Alloxan and streptozotocin are the most popular diabetogenic agents in assessing antidiabetic activity. Self-recovery, indicated by unstable hyperglycemia conditions in animals induced by those agents, becomes a significant disturbance to accurate examination. This study aimed to evaluate and reveal the self-recovery incidence in Sprague Dawley rats induced with alloxan and streptozotocin. Each dose of alloxan (120, 150, 180 mg/kg) and streptozotocin (40, 50, 60 mg/kg) was administered through intraperitoneal injection. The results showed that each dose of alloxan induced self-recovery incidence. In rats given streptozotocin, self-recovery only occurred at a dose of 40 mg/kg. The other higher doses of streptozotocin induced stable hyperglycemia. Furthermore, this study revealed two types of self-recovery, namely temporary recovery and end recovery. Temporary recovery occurred in rats given alloxan, during end recovery in alloxan and streptozotocin. The examination of insulin levels showed a significant reduction in the temporary recovery and stable diabetic rats compared to the end recovery rats. Besides, the bodyweight of rats was also affected by different incidences of self-recovery. This study recommends paying more attention to the possibility of self-recovery in obtaining animal models of diabetes, emphasizing the determination of suitable diabetogenic agents and proper doses to reduce self-recovery incidences. The finding of temporary recovery in rats receiving alloxan indicates that alloxan induced delayed diabetes in rats.

13.
Int J Food Sci ; 2023: 3245210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780095

RESUMO

Toxic compounds can induce the formation of free radicals (reactive oxygen species (ROS)) which can trigger damage and decrease cell viability. Clove (Syzygium aromaticum) contains phenolic compounds that are useful as antioxidants which can reduce ROS toxicity. However, little is known about the antitoxin activity of clove extract. Therefore, this study is aimed at determining the effect of ethanolic clove extract as an antitoxin agent against malachite green (MG) mutagen using the yeast Saccharomyces cerevisiae as a model. The methods used to analyze the ability of ethanolic clove extract as antitoxin were decolorization assay and cell viability test towards MG. The phenol contents of leaf and bud extract were 441.28 and 394.73 mg GAE g-1 extract, respectively. Clove leaf extract has strong antioxidant activity in vitro (IC50 9.29 ppm for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 29.57 for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)). Liquid chromatography quadrupole-mass spectrometry (LC-MS/MS) analysis showed the presence of 4-O-caffeoylquinic acid and several other bioactive compounds, in which these compounds had bioactivity against toxic compound. The addition of extract reduced the ability of S. cerevisiae to decolorize malachite green but increased cell viability. Based on the data, clove leaf extract shows the potential antitoxin activity. This research should facilitate a preliminary study to investigate the antitoxin agent derived from cloves leaf extract. Further research to analyze the antitoxin mechanism of this extract in yeast model is interesting to do to provide a comprehensive insight into the potential antitoxin agents of clove leaf extract.

14.
Life (Basel) ; 13(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36983909

RESUMO

Exposure to UV/infrared (IR) radiation is the main extrinsic factor that changes skin morphology and affects the increase in reactive oxygen species (ROS) in skin aging. Ten varieties of andaliman (Zanthoxylum acanthopodium DC.) fruit are presumed to have skin anti-aging compounds via an enzyme-inhibition mechanism. This study aims to compare ten essential oils (EOs) of andaliman fruit varieties, group them according to their varieties, and obtain the chemical components that can be used as potential skin anti-aging agents using molecular docking. EOs were isolated by hydrodistillation, and the determination of the chemical compounds was performed using gas chromatography-mass spectrometry (GC-MS). Using the Orange data mining software, a heatmap was used for grouping and showing the abundance of the compounds of ten varieties. Finally, molecular docking was conducted using the software AutoDockTools 1.5.7. There were 97 chemical components in the ten EOs of andaliman fruit varieties, with the main chemical components being geranyl acetate (29.87%) and D-limonene (26.49%), and they were grouped into three clusters. The chemical components that are prospective candidates as skin anti-aging agents are geranyl acetate and D-limonene, found in abundance in the Sihalus variety of andaliman fruit. These can be developed for applications in the pharmaceutical industry.

15.
Life (Basel) ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36836796

RESUMO

The use of herbal medicines in recent decades has increased because their side effects are considered lower than conventional medicine. Unani herbal medicines are often used in Southern Asia. These herbal medicines are usually composed of several types of medicinal plants to treat various diseases. Research on herbal medicine usually focuses on insight into the composition of plants used as ingredients. However, in the present study, we extended to the level of metabolites that exist in the medicinal plants. This study aimed to develop a predictive model of the Unani therapeutic usage based on its constituent metabolites using deep learning and data-intensive science approaches. Furthermore, the best prediction model was then utilized to extract important metabolites for each therapeutic usage of Unani. In this study, it was observed that the deep neural network approach provided a much better prediction model than other algorithms including random forest and support vector machine. Moreover, according to the best prediction model using the deep neural network, we identified 118 important metabolites for nine therapeutic usages of Unani.

16.
Metabolites ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837775

RESUMO

The potential application of Xylocarpus granatum, a mangrove species, as traditional medicine has been widely linked to its high secondary metabolite and antioxidant contents. However, few studies have been reported to identify and classify active metabolites responsible for such excellent biological activities. Therefore, the aim of this work was to determine the antioxidant activity, identify the metabolite profiles, and predict the metabolites acting as antioxidants in X. granatum extract using a gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach. The seeds, stems, fruit peel, pulp, leaves, and twigs of X. granatum were macerated with ethanol. Each extract was analyzed with GC-MS, and the data were processed using mass spectrometry data-independent analysis (MS-DIAL) software to identify the metabolites. The IC50 value of plant parts of X. granatum ranged from 7.73 to 295 ppm. A total of 153 metabolites were identified and confirmed in the X. granatum extracts. Among the identified metabolites, epicatechin and epigallocatechin were the two most abundant in the stem extracts and are expected to have the greatest potential as antioxidants. Principal component analysis (PCA) succeeded in grouping all parts of the plant into three groups based on the composition of the metabolites: group 1 (stems, fruit peel, and twigs), group 2 (seeds and pulp), and group 3 (leaves).

17.
J Ethnopharmacol ; 282: 114618, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508803

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Syzygium polyanthum (Wight) Walp leaves are traditionally used to cure diabetes in many regions of Indonesia. Traditional use involves boiling the leaves until the water is reduced to half volume, and then the decoction is taken 1-2 times daily. Despite several studies reporting the antidiabetic activity of this plant, bioactive compounds have not been well identified. AIM OF THE STUDY: Indonesia is one of the countries with the highest diabetes cases, particularly type 2 diabetes mellitus (T2DM). Few people have access to modern medicinal treatment; thus, the role of antidiabetic traditional medicine has become increasingly important. This research aimed to identify α-glucosidase inhibitors from S. polyathum leaves using a metabolomics approach. When the active compounds of S. polyathum are properly identified, the quality of the herb can be more easily controlled. MATERIALS AND METHODS: The dried leaves of S. polyanthum were extracted by a comprehensive extraction method using a solvent combination of n-hexane, acetone, and water in a gradient, resulting in a total of 42 fractions. All fractions were subjected to an in vitro α-glucosidase inhibition test and chemical profile analysis using Nuclear Magnetic Resonance (NMR) and high performance liquid chromatography (HPLC). Orthogonal projection least square (OPLS) analysis was used to correlate the two data to identify NMR signals, and HPLC chromatogram peaks correlated to the activity. 2D NMR and ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) analyses were also used to give more precise compound identification. The activity of the identified active compounds was confirmed by an in silico technique. RESULTS AND DISCUSSION: The results of the α-glucosidase activity test showed that the most active fractions were obtained from solvents with medium polarity: Fractions 9 and 10 (F9 and F10), obtained from gradient acetone-water 4:1 and 3:2, respectively. The IC50 values of F9 and F10 were 24.8 and 31.8 µg/mL, respectively. NMR data showed that F9 had more intense and diverse signals in the aromatic region than F10. OPLS analysis results showed that some typical flavonoid signals abundant in F9 positively correlated with α-glucosidase activity. 2D NMR and UHPLC-HRMS analysis of F9 led to the conclusion that these signals could be attributed to myricetin-3-O-rhamnoside (myricitrin) and epigallocatechin-3-gallate (EGCG). In silico analysis confirmed these results, as myricitrin and EGCG had binding energies resembling acarbose as a positive control (-8.47, -8.19, and -10.13, respectively). CONCLUSIONS: NMR and HPLC-metabolomics successfully identified myricitrin and EGCG as α-glucosidase inhibitors from S. polyanthum leaves, and docking analysis validated their inhibitory activity. The results of this study justified the traditional use of S. polyanthum as an antidiabetes herbal.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Metabolômica , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Folhas de Planta/química , Syzygium/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fitoterapia , Extratos Vegetais/química , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo
18.
Life (Basel) ; 12(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36013310

RESUMO

Uric acid, which causes gout, is the end product of purine catabolism, synthesized by xanthine oxidase, guanine deaminase, adenine deaminase, purine nucleoside phosphorylase, and 5-nucleotidase II. Garlic contains bioactive compounds that have potential as antigout agents. Garlic fermentation to black garlic changes its components, which may affect its beneficial potential. This study aimed to select types of garlic (Indonesian garlic) and imported garlic, and to predict the interaction between their compounds and five target proteins through an in silico approach and a multivariate analysis, namely partial least squares-discriminant analysis (PLS-DA), to determine their different constituents. The target proteins were collected from open-access databases, and the compounds were identified using mass spectrometry data. The PLS-DA score plot succeeded in classifying the samples into three classes, with each class having a discriminatory compound. Based on the in silico studies, we predicted the best binding score of the five target proteins with seven important compounds: alliin, N-acetyl-S-allyl-L-cysteine, ajoene, pyridoxal, pyridoxamine, 4-guanidinobutyric acid, and D-glucosamine. These were mostly found in black garlic, with no different concentrations in the local and imported samples. Through this approach, we concluded that black garlic is a better candidate for antigout treatments, as several compounds were found to have good binding to the target proteins.

19.
J Agric Food Chem ; 70(8): 2695-2700, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167297

RESUMO

Kaempferol glycosides are functional components of jack bean. The chemical stability of kaempferol glycosides under simulated food processing conditions was evaluated in this study by subjecting the methanol extract and each compound to heat treatment. During the heat treatment, rearrangement of the anisoyl group on the rhamnose moiety of the kaempferol glycoside was observed, followed by hydrolysis upon long-term heat treatment. One of the two regioisomers produced under heating conditions showed higher α-glucosidase inhibitory activity than the dominant anisoyl kaempferol glycoside. This rearrangement reaction was also observed upon the heat treatment of methyl-3-O-anisoyl-rhamnose, with the rearrangement from the 3-position to the 2-position occurring preferentially. The approach adopted in this study can be used to design appropriate food processing conditions, which, in turn, will increase the functional value of foods.


Assuntos
Canavalia , Glicosídeos , Canavalia/química , Glicosídeos/química , Quempferóis/farmacologia , alfa-Glucosidases
20.
J Nat Med ; 76(1): 132-143, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34510371

RESUMO

Adenostemma lavenia (L.) Kuntze (Asteraceae) is widely distributed in tropical regions of East Asia, and both A. lavenia and A. madurense (DC) are distributed in Japan. In China and Taiwan, A. lavenia is used as a folk medicine for treating lung congestion, pneumonia, and hepatitis. However, neither phylogenic nor biochemical analysis of this plants has been performed to date. We have reported that the aqueous extract of Japanese A. lavenia contained high levels of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (11αOH-KA; a kaurenoic acid), which is a potent anti-melanogenic compound. Comparison of chloroplast DNA sequences suggested that A. lavenia is originated from A. madurense. Analyses of kaurenoic acids revealed that Japanese A. lavenia and A. madurense contained high levels of 11αOH-KA and moderate levels of 11α,15OH-KA, while Taiwanese A. lavenia mainly contained 9,11αOH-KA. The diverse biological activities (downregulation of Tyr, tyrosinase, gene expression [anti-melanogenic] and iNOS, inducible nitric oxide synthase, gene expression [anti-inflammatory], and upregulation of HO-1, heme-oxygenase, gene expression [anti-oxidative]) were associated with 11αOH-KA and 9,11αOH-KA but not with 11α,15OH-KA. Additionally, 11αOH-KA and 9,11αOH-KA decreased Keap1 (Kelch-like ECH-associated protein 1) protein levels, which was accompanied by upregulation of protein level and transcriptional activity of Nrf2 (NF-E2-related factor-2) followed by HO-1 gene expression. 11αOH-KA and 9,11αOH-KA differ from 11α,15OH-KA in terms of the presence of a ketone (αß-unsaturated carbonyl group, a thiol modulator) at the 15th position; therefore, thiol moieties on the target proteins, including Keap1, may be important for the biological activities of 11αOH-KA and 9,11αOH-KA and A. lavenia extract.


Assuntos
Asteraceae , Fator 2 Relacionado a NF-E2 , Diterpenos , Heme Oxigenase-1/metabolismo , Japão , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/metabolismo , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA