Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Langmuir ; 35(43): 14092-14097, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31568725

RESUMO

Developing new functional biomaterials requires the ability to simultaneously repel unwanted and guide wanted protein adsorption. Here, we systematically interrogate the factors determining the protein adsorption by comparing the behaviors of different polymeric surfaces, poly(ethylene glycol) and a poly(phosphoester), and five different natural proteins. Interestingly we observe that, at densities comparable to those used in nanocarrier functionalization, the same proteins are either adsorbed (fibrinogen, human serum albumin, and transferrin) or repelled (immunoglobulin G and lysozyme) by both polymers. However, when adsorption takes place, the specific surface dictates the amount and orientation of each protein.


Assuntos
Proteínas Sanguíneas/química , Muramidase/química , Polietilenoglicóis/química , Adsorção
2.
Acta Biomater ; 116: 318-328, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937204

RESUMO

Opsonization of nanocarriers is one of the most important biological barriers for controlled drug delivery. The typical way to prevent such unspecific protein adsorption and thus fast clearance by the immune system is the covalent modification of drug delivery vehicles with poly(ethylene glycol) (PEG), so-called PEGylation. Recently, polyphosphoesters (PPEs) were identified as adequate PEG substitutes, however with the benefits of controllable hydrophilicity, additional chemical functionality, or biodegradability. Here, we present a general strategy by non-covalent adsorption of different nonionic PPE-surfactants to nanocarriers with stealth properties. Polyphosphoester surfactants with different binding motifs were synthesized by anionic ring-opening polymerization of cyclic phosphates or phosphonates and well-defined polymers were obtained. They were evaluated with regard to their cytotoxicity, protein interactions, and corona formation and their cellular uptake. We proved that all PPE-surfactants have lower cytotoxicity as the common PEG-based surfactant (Lutensol® AT 50) and that their hydrolysis is controlled by their chemical structure. Two polymeric nanocarriers, namely polystyrene and poly(methyl methacrylate), and bio-based and potentially biodegradable hydroxyethyl starch nanocarriers were coated with the PPE-surfactants. All nanocarriers exhibited reduced protein adsorption after coating with PPE-surfactants and a strongly reduced interaction with macrophages. This general strategy allows the transformation of polymeric nanocarriers into camouflaged nanocarriers and by the chemical versatility of PPEs will allow the attachment of additional moieties for advanced drug delivery.


Assuntos
Nanopartículas , Tensoativos , Portadores de Fármacos , Polietilenoglicóis , Polímeros
3.
ACS Catal ; 10(20): 11864-11877, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33101760

RESUMO

Light-driven biocatalysis in recombinant cyanobacteria provides highly atom-efficient cofactor regeneration via photosynthesis, thereby remediating constraints associated with sacrificial cosubstrates. However, despite the remarkable specific activities of photobiocatalysts, self-shading at moderate-high cell densities limits efficient space-time-yields of heterologous enzymatic reactions. Moreover, efficient integration of an artificial electron sink into the tightly regulated network of cyanobacterial electron pathways can be highly challenging. Here, we used C=C bond reduction of 2-methylmaleimide by the NADPH-dependent ene-reductase YqjM as a model reaction for light-dependent biotransformations. Time-resolved NADPH fluorescence spectroscopy allowed direct monitoring of in-cell YqjM activity and revealed differences in NADPH steady-state levels and oxidation kinetics between different genetic constructs. This effect correlates with specific activities of whole-cells, which demonstrated conversions of >99%. Further channelling of electrons toward heterologous YqjM by inactivation of the flavodiiron proteins (Flv1/Flv3) led to a 2-fold improvement in specific activity at moderate cell densities, thereby elucidating the possibility of accelerating light-driven biotransformations by the removal of natural competing electron sinks. In the best case, an initial product formation rate of 18.3 mmol h-1 L-1 was reached, allowing the complete conversion of a 60 mM substrate solution within 4 h.

4.
ACS Appl Mater Interfaces ; 11(1): 1624-1629, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30516968

RESUMO

Synthetic polymers are commonly used as protein repelling materials for a variety of biomedical applications. Despite their widespread use, the fundamental mechanism underlying protein repellence is often elusive. Such insights are essential for improving existing and developing new materials. Here, we investigate how subtle differences in the chemistry of hydrophilic polyphosphoesters influence the adsorption of the human blood proteins serum albumin and fibrinogen. Using thermodynamic measurements, surface-specific vibrational spectroscopy, and Brewster angle microscopy, we investigate protein adsorption, hydration, and steric repulsion properties of the polyphosphoester polymers. Whereas both surface hydration and polymer conformation of the polymers vary substantially as a consequence of the chemical differences in the polymer structure, the protein repellency ability of these hydrophilic materials appears to be dominated by steric repulsion.


Assuntos
Fibrinogênio/química , Poliésteres/química , Albumina Sérica Humana/química , Adsorção , Humanos , Interações Hidrofóbicas e Hidrofílicas
5.
Adv Sci (Weinh) ; 6(22): 1901199, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763142

RESUMO

Dendritic cells (DCs) are part of the immune system and can internalize pathogens by carbohydrate receptors. The uptake induces maturation and migration of the DCs resulting in an adaptive immune response by presenting antigens to T-cells. Thus, targeted delivery to DCs is a powerful tool for immunotherapy. However, in blood, specific targeting is challenging as blood proteins adsorb to the nanocarriers and mask the targeting molecules. Additionally, covalent coupling of targeting groups to nanocarriers requires new chemistry for each nanocarrier, while a general strategy is missing. A general protocol by noncovalent adsorption of mannosylated polyphosphoesters (PPEs) on the nanocarriers' surface resulting in specific uptake into DCs combined with low protein adsorption of PPEs is presented. PPEs with hydrophobic anchors and multiple mannose units are reported and adsorbed to different model nanocarriers. Their protein corona remain similar to pure stealth nanocarriers and prove only low uptake into nontargeted cells (monocytes). Due to the "stealth" properties of PPEs, a high specific uptake into DCs is achieved after incubation in human blood plasma, proving an efficient combination of "stealth" and targeting after simple adsorption of the PPEs. This strategy can transform any nanocarrier into DC-targeting by noncovalent adsorption of PPEs and will aid in developing novel immunotherapies.

6.
Cancer Res ; 66(14): 7216-24, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16849569

RESUMO

Cancers have been described as wounds that do not heal, suggesting that the two share common features. By comparing microarray data from a model of renal regeneration and repair (RRR) with reported gene expression in renal cell carcinoma (RCC), we asked whether those two processes do, in fact, share molecular features and regulatory mechanisms. The majority (77%) of the genes expressed in RRR and RCC were concordantly regulated, whereas only 23% were discordant (i.e., changed in opposite directions). The orchestrated processes of regeneration, involving cell proliferation and immune response, were reflected in the concordant genes. The discordant gene signature revealed processes (e.g., morphogenesis and glycolysis) and pathways (e.g., hypoxia-inducible factor and insulin-like growth factor-I) that reflect the intrinsic pathologic nature of RCC. This is the first study that compares gene expression patterns in RCC and RRR. It does so, in particular, with relation to the hypothesis that RCC resembles the wound healing processes seen in RRR. However, careful attention to the genes that are regulated in the discordant direction provides new insights into the critical differences between renal carcinogenesis and wound healing. The observations reported here provide a conceptual framework for further efforts to understand the biology and to develop more effective diagnostic biomarkers and therapeutic strategies for renal tumors and renal ischemia.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Rim/fisiologia , Regeneração/fisiologia , Animais , Carcinoma de Células Renais/genética , Feminino , Expressão Gênica , Neoplasias Renais/genética , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Regeneração/genética
7.
Antioxid Redox Signal ; 9(10): 1541-67, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17678439

RESUMO

Autoimmune diseases such as rheumatoid arthritis (RA) are chronic diseases that cannot be prevented or cured If the pathologic basis of such disease would be known, it might be easier to develop new drugs interfering with critical pathway. Genetic analysis of animal models for autoimmune diseases can result in discovery of proteins and pathways that play key function in pathogenesis, which may provide rationales for new therapeutic strategies. Currently, only the MHC class II is clearly associated with human RA and animal models for RA. However, recent data from rats and mice with a polymorphism in Ncf1, a member of the NADPH oxidase complex, indicate a role for oxidative burst in protection from arthritis. Oxidative burst-activating substances can treat and prevent arthritis in rats, as efficiently as clinically applied drugs, suggesting a novel pathway to a therapeutic target in human RA. Here, the authors discuss the role of oxygen radicals in regulating the immune system and autoimmune disease. It is proposed that reactive oxygen species set the threshold for T cell activation and thereby regulate chronic autoimmune inflammatory diseases like RA. In the light of this new hypothesis, new possibilities for preventive and therapeutic treatment of chronic inflammatory diseases are discussed.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/fisiopatologia , Espécies Reativas de Oxigênio , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , NADPH Oxidases/metabolismo , Oxirredução , Linfócitos T/citologia
8.
J Immunol ; 179(3): 1431-7, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17641008

RESUMO

The view on reactive oxygen species (ROS) in inflammation is currently shifting from being considered damaging toward having a more complex role in regulating inflammatory reactions. We recently demonstrated a role of ROS in regulation of animal models for the autoimmune disease rheumatoid arthritis. Low levels of ROS production, due to a mutation in the Ncf1 gene coding for the Ncf1 (alias p47(phox)) subunit of the NADPH oxidase complex, was shown to be associated with increased autoimmunity and arthritis severity in both rats and mice. To further investigate the role of ROS in autoimmunity, we studied transgenic mice expressing collagen type II (CII) with a mutation (D266E) in the immunodominant epitope that mimics the rat and human CII (i.e., mutated mouse collagen or MMC). This mutation results in a stronger binding of the epitope to the MHC class II molecule and leads to more pronounced tolerance and resistance to arthritis induced with rat CII. When the Ncf1 mutation was bred into these mice, tolerance was broken, resulting in enhanced T cell autoreactivity, high titers of anti-CII Abs, and development of severe arthritis. These findings highlight the importance of a sufficient ROS production in maintenance of tolerance to self-Ags, a central mechanism in autoimmune diseases such as rheumatoid arthritis. This is important as we, for the first time, can follow the effect of ROS on molecular mechanisms where T cells are responsible for either protection or promotion of arthritis depending on the level of oxygen species produced.


Assuntos
Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Colágeno Tipo II/imunologia , Regulação para Baixo , Tolerância Imunológica , Espécies Reativas de Oxigênio , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Artrite Experimental/genética , Colágeno Tipo II/administração & dosagem , Colágeno Tipo II/genética , Regulação para Baixo/genética , Predisposição Genética para Doença , Tolerância Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Arthritis Res Ther ; 9(1): R3, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17244351

RESUMO

Quantitative traits such as complex diseases are controlled by many small-effect genes that are difficult to identify. Here we present a novel strategy to identify the candidate genes for small-effect quantitative trait loci (QTL) in collagen induced arthritis (CIA) using global genome and transcriptome approaches. First, we performed genome linkage analysis in F2 progeny of the CIA susceptible and resistant strains to search for small-effect QTL. Second, we detected gene expression patterns of both strains during CIA. The candidate genes were identified using three criteria: they are located in a genomic region linked to CIA; they are disease-specific differentially expressed during CIA; and they are strain-specific differentially expressed regarding the two parental strains. Eight small-effect QTL controlling CIA severity were identified. Of 22,000 screened genes, 117 were both strain-specific and disease-specific differentially expressed during CIA. Of these 117 genes, 21 were located inside the support intervals of the 8 small-effect QTL and thus were considered as candidate genes.


Assuntos
Artrite Experimental/genética , Genoma/genética , Locos de Características Quantitativas/genética , Animais , Artrite Experimental/diagnóstico , Perfilação da Expressão Gênica/métodos , Ligação Genética/genética , Marcadores Genéticos/genética , Camundongos , Camundongos Endogâmicos DBA , Especificidade da Espécie
10.
J Immunol ; 177(10): 7042-9, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17082620

RESUMO

The generation of advanced intercross lines (AIL) is a powerful approach for high-resolution fine mapping of quantitative trait loci (QTLs), because they accumulate much more recombination events compared with conventional F2 intercross and N2 backcross. However, the application of this approach is severely hampered by the requirements of excessive resources to maintain such crosses, i.e., in terms of animal care, space, and time. Therefore, in this study, we produced an AIL to fine map collagen-induced arthritis (CIA) QTLs using comparatively limited resources. We used only 308 (DBA/1 x FVB/N)F11/12 AIL mice to refine QTLs controlling the severity and onset of arthritis as well as the Ab response and T cell subset in CIA, namely Cia2, Cia27, and Trmq3. These QTLs were originally identified in (DBA/1 x FVB/N)F2 progeny. The confidence intervals of the three QTLs were refined from 40, 43, and 48 Mb to 12, 4.1, and 12 Mb, respectively. The data were complemented by the use of another QTL fine-mapping approach, haplotype analysis, to further refine Cia2 into a 2-Mb genomic region. To aid in the search for candidate genes for the QTLs, genome-wide expression profiling was performed to identify strain-specific differentially expressed genes within the confidence intervals. Of the 1396 strain-specific differentially expressed genes, 3, 3, and 12 genes were within the support intervals of the Cia2, Cia27, and Trmq3, respectively. In addition, this study revealed that Cia27 and Trmq3 controlling anti-CII IgG2a Ab and CD4:CD8 T cell ratio, respectively, also regulated CIA clinical phenotypes.


Assuntos
Artrite Experimental/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Animais , Artrite Experimental/imunologia , Artrite Experimental/fisiopatologia , Bovinos , Mapeamento Cromossômico/métodos , Colágeno Tipo II/imunologia , Feminino , Perfilação da Expressão Gênica , Haplótipos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Índice de Gravidade de Doença
11.
Arthritis Res Ther ; 7(4): R877-84, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15987490

RESUMO

Collagen-induced arthritis (CIA), an approved animal model for rheumatoid arthritis, is thought to be a T cell-dependent disease. There is evidence that CD8+ T cells are a major subset controlling the pathogenesis of CIA. They probably contribute to certain features of disease, namely tissue destruction and synovial hyperplasia. In this study we examined the role of perforin (pfp), a key molecule of the cytotoxic death pathway that is expressed mainly in CD8+ T cells, for the pathogenesis of CIA. We generated DBA/1J mice suffering from mutations of the pfp molecule, DBA/1J-pfp-/-, and studied their susceptibility to arthritis. As a result, pfp-deficient mice showed a reduced incidence (DBA/1J-pfp+/+, 64%; DBA/1J-pfp-/-, 54%), a slightly delayed onset (onset of disease: DBA/1J-pfp+/+, 53 +/- 3.6; DBA/1J-pfp-/-, 59 +/- 4.9 (mean +/- SEM), and milder form of the disease (maximum disease score: DBA/1J-pfp+/+, 7.3 +/- 1.1; DBA/1J-pfp-/-, 3.4 +/- 1.4 (mean +/- SEM); P < 0.05). Concomitantly, peripheral T cell proliferation in response to the specific antigen bovine collagen II was increased in pfp-/- mice compared with pfp+/+ mice, arguing for an impaired killing of autoreactive T cells caused by pfp deficiency. Thus, pfp-mediated cytotoxicity is involved in the initiation of tissue damage in arthritis, but pfp-independent cytotoxic death pathways might also contribute to CIA.


Assuntos
Artrite Experimental/genética , Artrite Experimental/imunologia , Citotoxicidade Imunológica/genética , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Bovinos , Células Cultivadas , Colágeno , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Perforina , Proteínas Citotóxicas Formadoras de Poros
12.
Arthritis Rheum ; 50(11): 3721-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15529344

RESUMO

OBJECTIVE: Collagen-induced arthritis (CIA) in the mouse is one of the most widely used autoimmune experimental models, with many features similar to rheumatoid arthritis. This study sought to identify potential genetic regulatory mechanisms of CIA in major histocompatibility complex-matched (H2-q) F(2) hybrid mice. METHODS: We used 126 polymorphic markers to perform simple sequence-length polymorphism analysis on 290 F(2) hybrids of arthritis-susceptible (DBA/1J) and arthritis-resistant (FVB/N) inbred mouse strains. The major clinical traits (disease severity and onset) were assessed, and serum antibodies specific to type II collagen (CII) were determined by enzyme-linked immunosorbent assay in 270 F(2) mice. Lymph nodes from 94 F(2) mice were used to test the ratio of CD4 to CD8 by fluorescence-activated cell sorter analysis, and cell proliferation was determined by XTT test. RESULTS: Two quantitative trait loci (QTLs) identified in previous studies were confirmed; these were severity-controlling Cia2 and onset-controlling Cia4 on chromosome 2. Moreover, we identified 5 new QTLs, 1 for CII-specific IgG2a antibodies on chromosome 5, 2 controlling the CII-specific IgG1 antibody response on chromosomes 10 and 13, 1 for the CD4:CD8 ratio on chromosome 2, and 1 for cell proliferation (measured by XTT test) on chromosome 16. Complement component C5 was identified as the probable main candidate gene for the QTLs Cia2 and Cia4. F(2) mice carrying a 2-basepair deletion of C5, the FVB/N allele, had low incidence and less severe disease as compared with those carrying the DBA/1J allele. CONCLUSION: This genome scan provides additional evidence confirming the role of C5 as a probable candidate gene for Cia2 and Cia4 loci, and identifies new QTLs controlling new traits in autoimmune arthritis.


Assuntos
Artrite Experimental/genética , Complemento C5/genética , Locos de Características Quantitativas , Animais , Colágeno Tipo II , Variação Genética , Escore Lod , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Penetrância
13.
Infect Immun ; 72(7): 4061-71, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15213151

RESUMO

PCR was employed to determine the presence of all known superantigen genes (sea, seq, and tst) and of the exotoxin-like gene cluster (set) in 40 Staphylococcus aureus isolates from blood cultures and throat swabs; 28 isolates harbored superantigen genes, five on average, and this strictly correlated with their ability to stimulate T-cell proliferation. In contrast, the set gene cluster was detected in every S. aureus strain, suggesting a nonredundant function for these genes which is different from T-cell activation. No more than 10% of normal human serum samples inhibited the T-cell stimulation elicited by egc-encoded enterotoxins (staphylococcal enterotoxins G, I, M, N, and O), whereas between 32 and 86% neutralized the classical superantigens. Similarly, intravenous human immunoglobulin G preparations inhibited egc-encoded superantigens with 10- to 100-fold-reduced potency compared with the classical enterotoxins. Thus, there are surprisingly large gaps in the capacity of human serum samples to neutralize S. aureus superantigens.


Assuntos
Toxinas Bacterianas/imunologia , Enterotoxinas/imunologia , Soro/imunologia , Staphylococcus aureus/imunologia , Superantígenos/imunologia , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA