Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38351000

RESUMO

Research on the role of the hippocampus in memory acquisition has generally focused on active learning. But to understand memory, it is at least as important to understand processes that happen offline, during both wake and sleep. In a study of patients with amnesia, we previously demonstrated that although a functional hippocampus is not necessary for the acquisition of procedural motor memory during training session, it is required for its offline consolidation during sleep. Here, we investigated whether an intact hippocampus is also required for the offline consolidation of procedural motor memory while awake. Patients with amnesia due to hippocampal damage (n = 4, all male) and demographically matched controls (n = 10, 8 males) trained on the finger tapping motor sequence task. Learning was measured as gains in typing speed and was divided into online (during task execution) and offline (during interleaved 30 s breaks) components. Amnesic patients and controls showed comparable total learning, but differed in the pattern of performance improvement. Unlike younger adults, who gain speed across breaks, both groups gained speed only while typing. Only controls retained these gains over the breaks; amnesic patients slowed down and compensated for these losses during subsequent typing. In summary, unlike their peers, whose motor performance remained stable across brief breaks in typing, amnesic patients showed evidence of impaired access to motor procedural memory. We conclude that in addition to being necessary for the offline consolidation of motor memories during sleep, the hippocampus maintains access to motor memory across brief offline periods during wake.


Assuntos
Consolidação da Memória , Desempenho Psicomotor , Adulto , Humanos , Masculino , Destreza Motora , Memória , Sono , Amnésia , Hipocampo
2.
Brain ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650060

RESUMO

In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-rapid eye movement sleep (EE-SWAS), a sleep stage dominated by sleep spindles, brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, p≈0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (p≈0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 seconds after each thalamic spike (p<0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.

3.
Hepatology ; 71(4): 1198-1212, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30805949

RESUMO

NGM282, an engineered fibroblast growth factor 19 analogue, rapidly and significantly reduced liver fat content in a multicenter, randomized, double-blind, placebo-controlled study in patients with biopsy-confirmed nonalcoholic steatohepatitis (NASH). However, it is unclear whether these changes would be accompanied by histological improvement. In this open-label study, we assessed the histological efficacy of NGM282 in patients with biopsy-confirmed nonalcoholic steatohepatitis. Paired liver biopsies from 43 patients who received subcutaneous NGM282 (1 mg, n = 24; 3 mg, n = 19) once daily for 12 weeks were evaluated blinded to time point, subject, and clinical information. At week 12, NGM282 significantly reduced nonalcoholic fatty liver disease activity score (NAS; -1.9; 95% confidence interval, -2.6 to -1.2; P < 0.001 in the 1 mg group; -2.2, -3.1 to -1.3; P < 0.001 in the 3 mg group) and fibrosis (-0.5; -0.9 to 0; P = 0.035 in the 3 mg group) scores. Overall, 50% and 63% of the patients receiving NGM282 1 mg or 3 mg, respectively, improved NAS by 2 or more points without fibrosis worsening. Of the patients receiving NGM282 1 mg or 3 mg, 25% and 42%, respectively, improved liver fibrosis by one stage or more without worsening of steatohepatitis. Treatment with NGM282 led to relative reductions in liver fat content (-58% and -67% in the 1 mg and 3 mg groups, respectively), corrected T1 (cT1; -8% and -9%), alanine aminotransferase (ALT) (-67% and -60%), aspartate aminotransferase (-57% and -52%), and fibrogenesis biomarkers neoepitope-specific N-terminal propeptide of type III collagen (Pro-C3; -22% and -33%) and enhanced liver fibrosis score (ELF; -3% and -6%) at week 12. Greater reductions in Pro-C3, ELF, and cT1, but not in liver fat content, 7alpha-hydroxy-4-cholesten-3-one, or ALT, were observed in histological responders than in nonresponders. Conclusion: In this open-label study, NGM282 improved the histological features of NASH in 12 weeks with significant reductions in NAS and fibrosis scores, accompanied by improvements in noninvasive imaging and serum markers.


Assuntos
Fatores de Crescimento de Fibroblastos/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Feminino , Fatores de Crescimento de Fibroblastos/administração & dosagem , Humanos , Injeções Subcutâneas , Cirrose Hepática/etiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Proc IEEE Inst Electr Electron Eng ; 103(6): 907-925, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34334804

RESUMO

Brain-computer interfaces (BCIs) have been explored in the field of neuroengineering to investigate how the brain can use these systems to control external devices. We review the principles and approaches we have taken to develop a sensorimotor rhythm EEG based brain-computer interface (BCI). The methods include developing BCI systems incorporating the control of physical devices to increase user engagement, improving BCI systems by inversely mapping scalp-recorded EEG signals to the cortical source domain, integrating BCI with noninvasive neuromodulation strategies to improve learning, and incorporating mind-body awareness training to enhance BCI learning and performance. The challenges and merits of these strategies are discussed, together with recent findings. Our work indicates that the sensorimotor-rhythm-based noninvasive BCI has the potential to provide communication and control capabilities as an alternative to physiological motor pathways.

5.
Sleep ; 46(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531587

RESUMO

STUDY OBJECTIVES: Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS: Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS: Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS: Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.


Assuntos
Consolidação da Memória , Adulto Jovem , Humanos , Estimulação Acústica , Consolidação da Memória/fisiologia , Sono/fisiologia , Memória/fisiologia , Eletroencefalografia
6.
PLoS One ; 18(10): e0286834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37874823

RESUMO

Interleukin (IL)-7 is broadly active on T-cell populations, and modified versions have been clinically evaluated for a variety of therapeutic applications, including cancer, lymphopenia, and infectious diseases; and found to be relatively well-tolerated and biologically active. Here we describe novel IL-7R agonists that are unrelated in structure to IL-7, bind to the receptor subunits differently from IL-7, but closely emulate IL-7 biology. The small size, low structural complexity, and the natural amino acid composition of the pharmacologically active peptide MDK1472 allows facile incorporation into protein structures, such as the IgG2-Fc fusion MDK-703. This molecule possesses properties potentially better suited to therapeutic applications than native IL-7 or its derivatives. We compared these compounds with IL-7 for immune cell selectivity, induction of IL-7R signaling, receptor-mediated internalization, proliferation, and generation of immune cell phenotypes in human and non-human primate (NHP) peripheral blood cells in vitro; and found them to be similar in biological activity to IL-7. In cynomolgus macaques, MDK-703 exhibits a circulating half-life of 46 hr and produces sustained T-cell expansion characteristic of IL-7 treatment. In the huCD34+-engrafted NSG mouse model of the human immune system, MDK-703 induces an immune cell profile very similar to that generated by IL-7-derived compounds; including the pronounced expansion of memory T-cells, particularly the population of stem-like memory T-cells (Tscm) which may be important for anti-tumor activities reported with IL-7 treatment. Clinical administration of IL-7 and modified variants has been reported to induce anti-drug antibodies (ADAs), including IL-7 neutralizing antibodies. The novel peptide agonist reported here scores very low in predicted immunogenicity, and because the peptide lacks sequence similarity with IL-7, the problematic immunogenic neutralization of endogenous cytokine should not occur. The properties we report here implicate MDK-703 as a candidate for clinical evaluation in oncology, anti-viral and other infectious disease, vaccine enhancement, and treatment of lymphopenia.


Assuntos
Interleucina-7 , Linfopenia , Receptores de Interleucina-7 , Animais , Humanos , Camundongos , Citocinas/metabolismo , Interleucina-7/farmacologia , Peptídeos/farmacologia , Receptores de Interleucina-7/agonistas
7.
Front Neurol ; 13: 871166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785365

RESUMO

Sleep spindles, defining oscillations of stage II non-rapid eye movement sleep (N2), mediate sleep-dependent memory consolidation. Spindles are disrupted in several neurodevelopmental, neuropsychiatric, and neurodegenerative disorders characterized by cognitive impairment. Increasing spindles can improve memory suggesting spindles as a promising physiological target for the development of cognitive enhancing therapies. This effort would benefit from more comprehensive and spatially precise methods to characterize spindles. Spindles, as detected with electroencephalography (EEG), are often widespread across electrodes. Available evidence, however, suggests that they act locally to enhance cortical plasticity in the service of memory consolidation. Here, we present a novel method to enhance the spatial specificity of cortical source estimates of spindles using combined EEG and magnetoencephalography (MEG) data constrained to the cortex based on structural MRI. To illustrate this method, we used simultaneous EEG and MEG recordings from 25 healthy adults during a daytime nap. We first validated source space spindle detection using only EEG data by demonstrating strong temporal correspondence with sensor space EEG spindle detection (gold standard). We then demonstrated that spindle source estimates using EEG alone, MEG alone and combined EEG/MEG are stable across nap sessions. EEG detected more source space spindles than MEG and each modality detected non-overlapping spindles that had distinct cortical source distributions. Source space EEG was more sensitive to spindles in medial frontal and lateral prefrontal cortex, while MEG was more sensitive to spindles in somatosensory and motor cortices. By combining EEG and MEG data this method leverages the differential spatial sensitivities of the two modalities to obtain a more comprehensive and spatially specific source estimation of spindles than possible with either modality alone.

8.
Schizophr Res ; 221: 63-70, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32014359

RESUMO

Although schizophrenia is defined by waking phenomena, a growing literature documents a deficit in sleep spindles, a defining oscillation of stage 2 non-rapid eye movement sleep. Compelling evidence supports an important role for spindles in cognition, and particularly memory. In schizophrenia, although the spindle deficit correlates with impaired sleep-dependent memory consolidation, recent clinical trials find that increasing spindles does not improve memory. This may reflect that sleep-dependent memory consolidation relies not on spindles alone, but also on their precise temporal coordination with cortical slow oscillations and hippocampal sharp-wave ripples. Consequently, interventions to improve memory in schizophrenia must not only increase spindles, but also preserve or enhance slow oscillations, hippocampal ripples and their temporal relations. Because hippocampal ripples and the activity of the thalamic spindle generator are difficult to measure noninvasively, screening potential interventions requires complementary animal and human studies. In this review we (i) propose that sleep oscillations are novel pathophysiological targets for therapy to improve cognition in schizophrenia; (ii) summarize our understanding of how these oscillations interact to consolidate memory; (iii) suggest that a systems neuroscience strategy is essential to selecting and evaluating effective treatments, and illustrate this with findings from clinical trials; and (iv) selectively review the interventional literature relevant to sleep and cognition, covering both pharmacological and noninvasive brain stimulation approaches. We conclude that coordinated sleep oscillations are promising targets for improving cognition in schizophrenia and that effective therapies will need to preserve or enhance sleep oscillatory dynamics and restore function at the network level.


Assuntos
Consolidação da Memória , Esquizofrenia , Animais , Eletroencefalografia , Hipocampo , Humanos , Memória , Esquizofrenia/complicações , Sono , Fases do Sono
9.
Sci Rep ; 10(1): 6627, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296101

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Front Neurosci ; 11: 691, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270110

RESUMO

Transcranial direct current stimulation (tDCS) has been shown to affect motor and cognitive task performance and learning when applied to brain areas involved in the task. Targeted stimulation has also been found to alter connectivity within the stimulated hemisphere during rest. However, the connectivity effect of the interaction of endogenous task specific activity and targeted stimulation is unclear. This study examined the aftereffects of concurrent anodal high-definition tDCS over the left sensorimotor cortex with motor network connectivity during a one-dimensional EEG based sensorimotor rhythm brain-computer interface (SMR-BCI) task. Directed connectivity following anodal tDCS illustrates altered connections bilaterally between frontal and parietal regions, and these alterations occur in a task specific manner; connections between similar cortical regions are altered differentially during left and right imagination trials. During right-hand imagination following anodal tDCS, there was an increase in outflow from the left premotor cortex (PMC) to multiple regions bilaterally in the motor network and increased inflow to the stimulated sensorimotor cortex from the ipsilateral PMC and contralateral sensorimotor cortex. During left-hand imagination following anodal tDCS, there was increased outflow from the stimulated sensorimotor cortex to regions across the motor network. Significant correlations between connectivity and the behavioral measures of total correct trials and time-to-hit (TTH) correct trials were also found, specifically that the input to the left PMC correlated with decreased right hand imagination performance and that flow from the ipsilateral posterior parietal cortex (PPC) to midline sensorimotor cortex correlated with improved performance for both right and left hand imagination. These results indicate that tDCS interacts with task-specific endogenous activity to alter directed connectivity during SMR-BCI. In order to predict and maximize the targeted effect of tDCS, the interaction of stimulation with the dynamics of endogenous activity needs to be examined comprehensively and understood.

11.
IEEE Trans Biomed Eng ; 63(1): 4-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26276986

RESUMO

GOAL: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device. METHODS: We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation. RESULTS: We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method. CONCLUSION: ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks. SIGNIFICANCE: This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs.


Assuntos
Mapeamento Encefálico/métodos , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Mãos/fisiologia , Imaginação/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
12.
Brain Stimul ; 9(6): 834-841, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27522166

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. OBJECTIVE: To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. METHODS: We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. RESULTS: We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. CONCLUSION: These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation.


Assuntos
Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Interfaces Cérebro-Computador , Imaginação/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
13.
Sci Rep ; 6: 38565, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966546

RESUMO

Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology.

14.
IEEE Trans Biomed Eng ; 61(7): 1967-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24956615

RESUMO

The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high-definition transcranial direct current stimulation (tDCS) using high-resolution electroencephalography (EEG). Previous studies have pointed to the after-effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event-related synchronization (ERS) were observed during and after the application of high-definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of eight subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high-definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event-related desynchronization and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high-resolution EEG during high-definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration.


Assuntos
Sincronização Cortical/efeitos da radiação , Eletroencefalografia/efeitos da radiação , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Sincronização Cortical/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Imagens de Fantasmas , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-25570208

RESUMO

Current EEG based brain computer interface (BCI) systems have achieved successful control in up to 3 dimensions; however the current paradigm may be unnatural for many rehabilitative and recreational applications. Therefore there is a great need to find motor imagination (MI) tasks that are realistic for output device control. In this paper we present our results on classifying hand gesture MI tasks, including right hand flexion, extension, supination and pronation using a novel EEG inverse imaging approach. By using both temporal and spatial specificity in the source domain we were able to separate MI tasks with up to 95% accuracy for binary classification of any two tasks compared to a maximum of only 79% in the sensor domain.


Assuntos
Interfaces Cérebro-Computador , Mãos/fisiologia , Imaginação/fisiologia , Eletroencefalografia , Humanos , Córtex Motor/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-25569994

RESUMO

Transcranial direct current stimulation (tDCS) has been used to affect the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex during or before task learning is performed. The application of tDCS to motor imagery, a cognitive task showing activation in similar areas to motor execution, has resulted in differing effects based on the amplitude and duration of stimulation. We utilize high definition tDCS, a more spatially localized version of tDCS, to investigate the effect of anodal stimulation on human motor imagery performance. In parallel, we model this stimulation using a finite element model to calculate stimulation area and electrical field amplitude within the brain in the motor cortex and non-stimulated frontal and parietal regions. Overall, we found a delayed increase in resting baseline power 30 minutes post stimulation in both the right and left sensorimotor cortices which resulted in an increase in event-related desynchronization.


Assuntos
Imaginação/fisiologia , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA