Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Elife ; 102021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34011433

RESUMO

Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here, we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We adopted a task for head-fixed mice that assays perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path toward achieving reproducibility in neuroscience through collaborative open-science approaches.


In science, it is of vital importance that multiple studies corroborate the same result. Researchers therefore need to know all the details of previous experiments in order to implement the procedures as exactly as possible. However, this is becoming a major problem in neuroscience, as animal studies of behavior have proven to be hard to reproduce, and most experiments are never replicated by other laboratories. Mice are increasingly being used to study the neural mechanisms of decision making, taking advantage of the genetic, imaging and physiological tools that are available for mouse brains. Yet, the lack of standardized behavioral assays is leading to inconsistent results between laboratories. This makes it challenging to carry out large-scale collaborations which have led to massive breakthroughs in other fields such as physics and genetics. To help make these studies more reproducible, the International Brain Laboratory (a collaborative research group) et al. developed a standardized approach for investigating decision making in mice that incorporates every step of the process; from the training protocol to the software used to analyze the data. In the experiment, mice were shown images with different contrast and had to indicate, using a steering wheel, whether it appeared on their right or left. The mice then received a drop of sugar water for every correction decision. When the image contrast was high, mice could rely on their vision. However, when the image contrast was very low or zero, they needed to consider the information of previous trials and choose the side that had recently appeared more frequently. This method was used to train 140 mice in seven laboratories from three different countries. The results showed that learning speed was different across mice and laboratories, but once training was complete the mice behaved consistently, relying on visual stimuli or experiences to guide their choices in a similar way. These results show that complex behaviors in mice can be reproduced across multiple laboratories, providing an unprecedented dataset and open-access tools for studying decision making. This work could serve as a foundation for other groups, paving the way to a more collaborative approach in the field of neuroscience that could help to tackle complex research challenges.


Assuntos
Comportamento Animal , Pesquisa Biomédica/normas , Tomada de Decisões , Neurociências/normas , Animais , Sinais (Psicologia) , Feminino , Aprendizagem , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Variações Dependentes do Observador , Estimulação Luminosa , Reprodutibilidade dos Testes , Fatores de Tempo , Percepção Visual
2.
Neuron ; 47(1): 129-41, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15996553

RESUMO

The midbrain dopamine neurons are hypothesized to provide a physiological correlate of the reward prediction error signal required by current models of reinforcement learning. We examined the activity of single dopamine neurons during a task in which subjects learned by trial and error when to make an eye movement for a juice reward. We found that these neurons encoded the difference between the current reward and a weighted average of previous rewards, a reward prediction error, but only for outcomes that were better than expected. Thus, the firing rate of midbrain dopamine neurons is quantitatively predicted by theoretical descriptions of the reward prediction error signal used in reinforcement learning models for circumstances in which this signal has a positive value. We also found that the dopamine system continued to compute the reward prediction error even when the behavioral policy of the animal was only weakly influenced by this computation.


Assuntos
Dopamina/fisiologia , Mesencéfalo/fisiologia , Neurônios/fisiologia , Recompensa , Algoritmos , Animais , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Macaca mulatta , Masculino , Mesencéfalo/citologia , Estimulação Luminosa , Esquema de Reforço , Movimentos Sacádicos/fisiologia
7.
Big Data ; 3(3): 173-188, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26487987

RESUMO

Until now, most large-scale studies of humans have either focused on very specific domains of inquiry or have relied on between-subjects approaches. While these previous studies have been invaluable for revealing important biological factors in cardiac health or social factors in retirement choices, no single repository contains anything like a complete record of the health, education, genetics, environmental, and lifestyle profiles of a large group of individuals at the within-subject level. This seems critical today because emerging evidence about the dynamic interplay between biology, behavior, and the environment point to a pressing need for just the kind of large-scale, long-term synoptic dataset that does not yet exist at the within-subject level. At the same time that the need for such a dataset is becoming clear, there is also growing evidence that just such a synoptic dataset may now be obtainable-at least at moderate scale-using contemporary big data approaches. To this end, we introduce the Kavli HUMAN Project (KHP), an effort to aggregate data from 2,500 New York City households in all five boroughs (roughly 10,000 individuals) whose biology and behavior will be measured using an unprecedented array of modalities over 20 years. It will also richly measure environmental conditions and events that KHP members experience using a geographic information system database of unparalleled scale, currently under construction in New York. In this manner, KHP will offer both synoptic and granular views of how human health and behavior coevolve over the life cycle and why they evolve differently for different people. In turn, we argue that this will allow for new discovery-based scientific approaches, rooted in big data analytics, to improving the health and quality of human life, particularly in urban contexts.

10.
J Neurophysiol ; 98(3): 1428-39, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17615124

RESUMO

Work in behaving primates indicates that midbrain dopamine neurons encode a prediction error, the difference between an obtained reward and the reward expected. Studies of dopamine action potential timing in the alert and anesthetized rat indicate that dopamine neurons respond in tonic and phasic modes, a distinction that has been less well characterized in the primates. We used spike train models to examine the relationship between the tonic and burst modes of activity in dopamine neurons while monkeys were performing a reinforced visuo-saccadic movement task. We studied spiking activity during four task-related intervals; two of these were intervals during which no task-related events occurred, whereas two were periods marked by task-related phasic activity. We found that dopamine neuron spike trains during the intervals when no events occurred were well described as tonic. Action potentials appeared to be independent, to occur at low frequency, and to be almost equally well described by Gaussian and Poisson-like (gamma) processes. Unlike in the rat, interspike intervals as low as 20 ms were often observed during these presumptively tonic epochs. Having identified these periods of presumptively tonic activity, we were able to quantitatively define phasic modulations (both increases and decreases in activity) during the intervals in which task-related events occurred. This analysis revealed that the phasic modulations of these neurons include both bursting, as has been described previously, and pausing. Together bursts and pauses seemed to provide a continuous, although nonlinear, representation of the theoretically defined reward prediction error of reinforcement learning.


Assuntos
Dopamina/fisiologia , Macaca mulatta/fisiologia , Mesencéfalo/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos/fisiologia , Vigília/fisiologia , Animais , Masculino , Mesencéfalo/diagnóstico por imagem , Distribuição Normal , Distribuição de Poisson , Tempo de Reação , Reprodutibilidade dos Testes , Ultrassonografia
12.
Games Econ Behav ; 52(2): 213-256, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16845435

RESUMO

Over the past half century economists have responded to the challenges of Allais [Econometrica (1953) 53], Ellsberg [Quart. J. Econ. (1961) 643] and others raised to neoclassicism either by bounding the reach of economic theory or by turning to descriptive approaches. While both of these strategies have been enormously fruitful, neither has provided a clear programmatic approach that aspires to a complete understanding of human decision making as did neoclassicism. There is, however, growing evidence that economists and neurobiologists are now beginning to reveal the physical mechanisms by which the human neuroarchitecture accomplishes decision making. Although in their infancy, these studies suggest both a single unified framework for understanding human decision making and a methodology for constraining the scope and structure of economic theory. Indeed, there is already evidence that these studies place mathematical constraints on existing economic models. This article reviews some of those constraints and suggests the outline of a neuroeconomic theory of decision.

13.
Exp Brain Res ; 154(4): 428-41, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14726989

RESUMO

The substantia nigra pars reticulata (SNr), a major output nucleus of the basal ganglia, has been implicated anatomically, pharmacologically and physiologically in the generation of saccadic eye movements. However, the unique contribution of the SNr to saccade generation remains elusive. We studied the activity of SNr neurons while rhesus monkeys made saccades from different initial orbital positions, to determine what effects, if any, eye position had on SNr neuronal activity. We found that there was no effect of eye position on SNr neuronal responses. We also examined the responses of SNr neurons during memory-guided saccades to determine whether SNr discharges were affected by whether the target of the upcoming saccade was visible. We found that there was no change in response properties during memory saccade trials as compared to otherwise identical visually guided trials. SNr neurons appear to carry no information about either eye position or whether a movement is guided by a visible or remembered target. These results suggest that nigral signals are encoded in the same coordinate frame as those in the SC and FEF, but that unlike neuronal responses in these areas, SNr activity is not influenced by whether the saccade target remains visible until the movement is executed.


Assuntos
Memória/fisiologia , Movimentos Sacádicos/fisiologia , Substância Negra/fisiologia , Potenciais de Ação/fisiologia , Animais , Movimentos Oculares/fisiologia , Macaca mulatta , Masculino , Neurônios/fisiologia , Estimulação Luminosa/métodos
14.
Nat Neurosci ; 11(12): 1372, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19023343
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA