Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chemphyschem ; 18(3): 287-291, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27860105

RESUMO

This study highlights that Fe additives offer better catalytic properties than carbon, Fe-C (iron carbide/carbon composites), and Fe-Mg (Mg2 FeH6 ) additives for the low-temperature dehydrogenation of magnesium hydride. The in situ X-ray diffraction measurements prove the formation of a Mg2 FeH6 phase in iron additive loaded MgH2 . Nonetheless, differential scanning calorimetry data suggest that this Mg2 FeH6 phase does not have any influence on dehydrogenation properties of MgH2 . On the other hand, the composite system Mg2 FeH6 /MgH2 shows significantly improved dehydrogenation properties even in absence of further additives. It is suggested that the improved system performance of Fe loaded MgH2 is attributed to restrictions on crystal growth of MgH2 and the catalytic behavior of Fe nanoparticles, rather than any intrinsic catalytic properties offered by the formed mixed metal phase Mg2 FeH6 .

2.
Chemphyschem ; 17(1): 178-83, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26751834

RESUMO

The present study aims to understand the catalysis of the MgH2 -Nb2 O5 hydrogen storage system. To clarify the chemical interaction between MgH2 and Nb2 O5 , the mechanochemical reaction products of a composite mixture of MgH2 +0.167 Nb2 O5 was monitored at different time intervals (2, 5, 15, 30, and 45 min, as well as 1, 2, 5, 10, 15, 20, 25, and 30 h). The study confirms the formation of catalytically active Nb-doped MgO nanoparticles (typically Mgx Nby Ox+y , with a crystallite size of 4-8 nm) by transforming reactants through an intermediate phase typified by Mgm-x Nb2n-y O5n-(x+y) . The initially formed Mgx Nby Ox+y product is shown to be Nb rich, with the concentration of Mg increasing upon increasing milling time. The nanoscale end-product Mgx Nby Ox+y closely resembles the crystallographic features of MgO, but with at least a 1-4 % higher unit cell volume. Unlike MgO, which is known to passivate the surfaces in MgH2 system, the Nb-dissolved MgO effectively mediates the Mg-H2 sorption reaction in the system. We believe that this observation will lead to new developments in the area of catalysis for metal-gas interactions.

3.
Soft Matter ; 10(3): 457-64, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24651666

RESUMO

Mussel-inspired synthetic poly(dopamine) thin films from dihydroxyphenylalanine (DOPA) and lysine, structurally similar to natural melanin, have drawn extensive interest as a versatile surface functionalization and coating material for use in a broad range of applications. In order to gain a better understanding of its complex and heterogeneous polymeric structure and mechanical properties, we report a computational model of poly(dopamine) by mimicking the polymerization process of the intermediate oxidized product of dopamine, 5,6-dihydroxyindole (DHI), via controlled in silico covalent cross-linking under the two most possible reaction schemes proposed in experiments. To validate our results using experiment, we synthesize poly(dopamine) thin films and perform experimental nanoindentations on the film. We observe an overall linear behavior for Young's modulus as a function of the degree of cross-linking, demonstrating the possibility of enhancing the mechanical robustness of poly(dopamine) materials by increasing the extent of polymerization. At the highest degree of polymerization considered (70%), the model mimics the linear tetrameric model for poly(dopamine) and melanin. At this degree of polymerization, we find a Young's modulus of 4.1-4.4 GPa, in agreement with our nanoindentation results of 4.3-10.5 GPa, previous experiments for natural melanin, as well as simulation results for the cyclic tetrameric melanin model (Chen et al., ACS Nano, 2013). Our results suggest that the non-covalent DHI aggregate model might not be appropriate to represent the structure of poly(dopamine) and melanin-like materials, since it gives a much smaller Young's modulus than the experimental lower bound. Our model not only nicely complements the previous computational work, but also provides new computational tools to study the heterogeneous structural and physicochemical properties of poly(dopamine) and melanin, as well as their formation pathways.


Assuntos
Indóis/metabolismo , Polímeros/metabolismo , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/metabolismo , Módulo de Elasticidade , Indóis/química , Lisina/química , Lisina/metabolismo , Melaninas/química , Melaninas/metabolismo , Polímeros/química
4.
Phys Chem Chem Phys ; 16(10): 4977-81, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24477353

RESUMO

Perovskite-type manganites, such as Pr1-xCaxMnO3, La1-xCaxMnO3 and La1-xSrxMnO3 solid solutions, are set forth as a case study of ferroelectricity formation mechanisms associated with the appearance of site- and bond-centered orbital ordering which breaks structural inversion symmetry. Even though the observation of macroscopic ferroelectricity may be hindered by the finite conductivity of manganites, polarization can still exist in nanoscale volumes. We use Piezoresponse Force Microscopy to probe local bias induced modifications of electrical and electromechanical properties at the manganite surface. Clear bias-induced piezocontrast and local hysteresis loops are observed for La0.89Sr0.11MnO3 and Pr0.60Ca0.40MnO3 compounds providing convincing evidence of the existence of locally induced polar states well above the transition temperature of the CO phase, while the reference samples without CO behavior show no ferroelectric-like response. Such coexistence of ferroelectricity and magnetism in manganites due to the charge ordering (CO) under locally applied electric field opens up a new pathway to expand the phase diagrams of such systems and to achieve spatially localized multiferroic effects with a potential to be used in a new generation of memory cells and data processing circuits.

5.
ACS Appl Mater Interfaces ; 16(7): 8655-8667, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38301168

RESUMO

Currently, magnetocaloric refrigeration technologies are emerging as ecofriendly and more energy-efficient alternatives to conventional expansion-compression systems. However, major challenges remain. A particular concern is the mechanical properties of magnetocaloric materials, namely, their fatigue under cycling and difficulty in processing and shaping. Nevertheless, in the past few years, using multistimuli thermodynamic cycles with multicaloric refrigerants has led to higher heat-pumping efficiencies. To address simultaneously the challenges and develop a multicaloric material, in this work, we have prepared magnetocaloric-based flexible composite mats composed of micrometric electroactive (EA) polyvinylidene fluoride (PVDF) fibers with embedded magnetocaloric/strictive La(Fe,Si)13 particles by the simple and cost-effective electrospinning technique. The composite's structural characterization, using X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, and measurements of the local-scale piezoresponse, revealed a cubic NaZn13-type structure of the La(Fe,Si)13 phase and the formation of the dominant polar ß-phase of the PVDF polymer. The PVDF-La(Fe,Si)13 composite showed an enhancement of the longitudinal piezoelectric coefficient (effective d33) (-11.01 pm/V) compared with the single PVDF fiber matrix (-9.36 pm/V). The main magnetic properties of La(Fe,Si)13 powder were retained in the PVDF-La(Fe,Si)13 composite, including its giant magnetocaloric effect. By retaining the unique magnetic properties of La(Fe,Si)13 embedded in the electroactive piezoelectric polymer fiber mats, we have designed a flexible, easily shapeable, and multifunctional composite enabling its potential application in multicaloric heat-pumping devices and other sensing and actuating devices.

6.
J Nanosci Nanotechnol ; 12(8): 6639-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962800

RESUMO

Bi(1-x-y)GdxBayFe(1-y)TiyO3 (x = 0.1 and y = 0.1, 0.2, 0.3) solid solutions have been prepared via solid state reaction method with the aim to obtaining magnetoelectric coupling (i.e., linear relation between magnetization and electric field) at room temperature. Optimum calcination and sintering strategies for obtaining pure perovskite phase, high density ceramics and homogeneous microstructures have been determined. The maximum ferroelectric transition temperature (Tc) of this system was 150-170 degrees C with the dielectric constant peak of 2300 at 100 kHz for y = 0.1. Well saturated piezoelectric loops were observed for all composition indicating room temperature ferroelectricity. Hardness and Young's modulus decrease with depth and with increasing concentration y.


Assuntos
Bário/química , Bismuto/química , Técnicas Eletroquímicas , Compostos Férricos/química , Gadolínio/química , Nanotecnologia , Titânio/química , Soluções , Difração de Raios X
7.
Biomedicines ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551994

RESUMO

2D ultrafine nanomaterials today represent an emerging class of materials with very promising properties for a wide variety of applications. Biomedical fields have experienced important new achievements with technological breakthroughs obtained from 2D materials with singular properties. Boron nitride nanosheets are a novel 2D layered material comprised of a hexagonal boron nitride network (BN) with interesting intrinsic properties, including resistance to oxidation, extreme mechanical hardness, good thermal conductivity, photoluminescence, and chemical inertness. Here, we investigated different methodologies for the exfoliation of BN nanosheets (BNNs), using ball milling and ultrasound processing, the latter using both an ultrasound bath and tip sonication. The best results are obtained using tip sonication, which leads to the formation of few-layered nanosheets with a narrow size distribution. Importantly, it was observed that with the addition of pluronic acid F127 to the medium, there was a significant improvement in the BN nanosheets (BNNs) production yield. Moreover, the resultant BNNs present improved stability in an aqueous solution. Cytotoxicity studies performed with HeLa cells showed the importance of taking into account the possible interferences of the nanomaterial with the selected assay. The prepared BNNs coated with pluronic presented improved cytotoxicity at concentrations up to 200 µg mL-1 with more than 90% viability after 24 h of incubation. Confocal microscopy also showed high cell internalization of the nanomaterials and their preferential biodistribution in the cell cytoplasm.

8.
Macromol Biosci ; 22(1): e2100311, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610190

RESUMO

Biomimetics offers excellent prospects for design a novel generation of improved biomaterials. Here the controlled integration of graphene oxide (GO) derivatives with a 3D marine spongin (MS) network is explored to nanoengineer novel smart bio-based constructs for bone tissue engineering. The results point out that 3D MS surfaces can be homogeneously coated by layer-by-layer (LbL) assembly of oppositely charged polyethyleneimine (PEI) and GO. Notably, the GOPEI@MS bionanocomposites present a high structural and mechanical stability under compression tests in wet conditions (shape memory). Dynamic mechanically (2 h of sinusoidal compression cyclic interval (0.5 Hz, 0-10% strain)/14 d) stimulates GOPEI@MS seeded with osteoblast (MC3T3-E1), shows a significant improvement in bioactivity, with cell proliferation being two times higher than under static conditions. Besides, the dynamic assays show that GOPEI@MS bionanocomposites are able to act as mechanical stimulus-responsive scaffolds able to resemble physiological bone extracellular matrix (ECM) requirements by strongly triggering mineralization of the bone matrix. These results prove that the environment created by the system cell-GOPEI@MS is suitable for controlling the mechanisms regulating mechanical stimulation-induced cell proliferation for potential in vivo experimentation.


Assuntos
Grafite , Alicerces Teciduais , Biomimética , Grafite/química , Grafite/farmacologia , Osteoblastos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Materials (Basel) ; 14(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808266

RESUMO

Pure BiFeO3 (BFO) and doped Bi0.9La0.1FeO3 (BLFO) thin films were prepared on Pt/TiO2/SiO2/Si substrates by a modified sol-gel technique using a separate hydrolysis procedure. The effects of final crystallization temperature and La doping on the phase structure, film morphology, and nanoscale piezoelectric properties were investigated. La doping and higher crystallization temperature lead to an increase in the grain size and preferred (102) texture of the films. Simultaneously, a decrease in the average effective piezoelectric coefficient (about 2 times in La-doped films) and an increase in the area of surface non-polar phase (up to 60%) are observed. Phase separation on the films' surface is attributed to either a second phase or to a non-polar perovskite phase at the surface. As compared with undoped BFO, La-doping leads to an increase in the average grain size and self-polarization that is important for future piezoelectric applications. It is shown that piezoelectric activity is directly related to the films' microstructructure, thus emphasizing the role of annealing conditions and La-doping that is frequently used to decrease the leakage current in BFO-based materials.

10.
Sci Rep ; 11(1): 9099, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907277

RESUMO

The sustainable cellular delivery of the pleiotropic drug curcumin encounters drawbacks related to its fast autoxidation at the physiological pH, cytotoxicity of delivery vehicles and poor cellular uptake. A biomaterial compatible with curcumin and with the appropriate structure to allow the correct curcumin encapsulation considering its poor solubility in water, while maintaining its stability for a safe release was developed. In this work, the biomaterial developed started by the preparation of an oil-in-water nanoemulsion using with a cytocompatible copolymer (Pluronic F 127) coated with a positively charged protein (gelatin), designed as G-Cur-NE, to mitigate the cytotoxicity issue of curcumin. These G-Cur-NE showed excellent capacity to stabilize curcumin, to increase its bio-accessibility, while allowing to arrest its autoxidation during its successful application as an anticancer agent proved by the disintegration of MDA-MB-231 breast cancer cells as a proof of concept.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Emulsões/química , Nanoestruturas/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Curcumina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Emulsões/administração & dosagem , Feminino , Fibroblastos , Gelatina/química , Humanos , Camundongos , Nanoestruturas/administração & dosagem , Azeite de Oliva/química , Poloxâmero/química , Água/química
11.
Nanotechnology ; 21(32): 325707, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20647627

RESUMO

We report a new method for the synthesis of photoluminescent SrAl(2)O(4):Ce(3+), Dy(3+), Eu(2+) nanotubes, PL-SNT:Ce(III), Ln, using solid-state reaction and post-annealing approach. This new optical nanotubular structure was characterized by HRTEM, SEM, AFM, EDX, steady-state and time-resolved PL spectroscopy. A series of f-f and f-d-transitions with light emission in structured bands peaking at 488 nm arising from the polymorphism of the host lattice was correlated with an intercrystalline distal-effect on the afterglow phenomenon.

12.
J Biomater Appl ; 35(4-5): 471-484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32635814

RESUMO

Polycaprolactone (PCL) electrospun scaffolds have been widely investigated for cartilage repair application. However, their hydrophobicity and small pore size has been known to prevent cell attachment, proliferation and migration. Here, PCL was blended with gelatin (GEL) combining the favorable biological properties of GEL with the good mechanical performance of the former. Also, polyethylene glycol (PEG) particles were introduced during the electrospinning of the polymers blend by simultaneous electrospraying. These particles were subsequently removed resulting in fibrous scaffolds with enlarged pore size. PCL, GEL and PEG scaffolds formulations were developed and extensively structural and biologically characterized. GEL incorporation on the PCL scaffolds led to a considerably improved cell attachment and proliferation. A substantial pore size and interconnectivity increase was obtained, allowing cell infiltration through the porogenic scaffolds. All together these results suggest that this combined approach may provide a potentially clinically viable strategy for cartilage regeneration.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/química , Gelatina/química , Nanofibras/química , Poliésteres/química , Alicerces Teciduais/química , Materiais Biocompatíveis/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Adesão Celular , Proliferação de Células , Humanos , Testes Mecânicos , Polietilenoglicóis/química , Porosidade , Regeneração , Engenharia Tecidual
13.
ACS Appl Mater Interfaces ; 12(35): 38962-38975, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805917

RESUMO

Graphene oxide (GO) assists a diverse set of promising routes to build bioactive neural microenvironments by easily interacting with other biomaterials to enhance their bulk features or, alternatively, self-assembling toward the construction of biocompatible systems with specific three-dimensional (3D) geometries. Herein, we first modulate both size and available oxygen groups in GO nanosheets to adjust the physicochemical and biological properties of polycaprolactone-gelatin electrospun nanofibrous systems. The results show that the incorporation of customized GO nanosheets modulates the properties of the nanofibers and, subsequently, markedly influences the viability of neural progenitor cell cultures. Interestingly, the partially reduced GO (rGO) nanosheets with larger dimensions trigger the best cell response, while the rGO nanosheets with smaller size provoke an accentuated decrease in the cytocompatibility of the resulting electrospun meshes. Then, the most auspicious nanofibers are synergistically accommodated onto the surface of 3D-rGO heterogeneous porous networks, giving rise to fibrous-porous combinatorial architectures suitable for enhancing adhesion and differentiation of neural cells. By varying the chemical composition of the nanofibers, it is possible to adapt their performance as physical crosslinkers for the rGO sheets, leading to the modulation of both pore size and structural/mechanical integrity of the scaffold. Importantly, the biocompatibility of the resultant fibrous-porous systems is not compromised after 14 days of cell culture, including standard differentiation patterns of neural progenitor cells. Overall, in light of these in vitro results, the reported scaffolding approach presents not only an indisputable capacity to support highly viable and interconnected neural circuits but also the potential to unlock novel strategies for neural tissue engineering applications.


Assuntos
Grafite/química , Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Porosidade , Ratos , Ratos Wistar
14.
Nanomaterials (Basel) ; 9(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718013

RESUMO

If piezoelectric micro-devices based on K0.5Na0.5NbO3 (KNN) thin films are to achieve commercialization, it is critical to optimize the films' performance using low-cost scalable processing conditions. Here, sol-gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500-600 nm and (Na + K)/Nb ratio of 1.07-1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures.

15.
ACS Appl Mater Interfaces ; 10(12): 10543-10551, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29498259

RESUMO

Peptide-based nanostructures are very promising for nanotechnological applications because of their excellent self-assembly properties, biological and chemical flexibility, and unique multifunctional performance. However, one of the limiting factors for the integration of peptide assemblies into functional devices is poor control of their alignment and other geometrical parameters required for device fabrication. In this work, we report a novel method for the controlled deposition of one of the representative self-assembled peptides-diphenylalanine (FF)-using a commercial inkjet printer. The initial FF solution, which has been shown to readily self-assemble into different structures such as nano- and microtubes and microrods, was modified to be used as an efficient ink for the printing of aligned FF-based structures. Furthermore, during the development of the suitable ink, we were able to produce a novel type of FF conformation with high piezoelectric response and excellent stability. By using this method, ribbonlike microcrystals based on FF could be formed and precisely patterned on different surfaces. Possible mechanisms of structure formation and piezoelectric effect in printed microribbons are discussed along with the possible applications.

16.
Nanoscale ; 10(26): 12505-12514, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29931025

RESUMO

Carbon nanodots (Cdots) are now emerging as promising nonlinear fluorophores for applications in biological environments. A thorough and systematic approach to the two-photon induced emission of Cdots that could provide design guidelines to control their nonlinear emission properties is still missing. In this work, we address the nonlinear optical spectroscopy of Cdots prepared by controlled chemical cutting of graphene oxide (GO). The two-photon absorption in the 700-1000 nm region and the corresponding emission spectrum are carefully investigated. The highest two-photon absorption cross-section estimated was 130 GM at 720 nm. This value is comparable with the one reported for graphene nanoribbons with push-pull architecture. The emission spectrum depends on the excitation mode. At the same excitation energy, nonlinear excitation results in excitation-wavelength independent emission, while upon linear excitation the emission is excitation-wavelength dependent. The biphotonic interaction seems to be selective towards sp2 clusters bearing electron donor and acceptor groups found in push-pull architectures. Both linear and nonlinear emission can be understood based on the existence of isolated sp2 clusters involved in π-π stacking interactions with clusters in adjacent layers.

17.
J Mol Model ; 23(4): 128, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28321656

RESUMO

Molecular modeling of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene (G) or graphene oxide (GO) were performed using the semi-empirical quantum approximation PM3 in HyperChem. The piezo properties of the composites were analyzed and compared with experimental data obtained for P(VDF-TrFE)-GO films. Qualitative agreement was obtained between the results of the modeling and the experimental results in terms of the properties of the measured effective piezoelectric coefficient d 33eff and its decrease in the presence of G/GO in comparison with the average computed piezoelectric coefficient . When models incorporating one or several G layers with 54 carbon atoms were investigated, the average piezoelectric coefficient was found to decrease to -9.8 pm/V for the one-sided model PVDF/G and to -18.98 pm/V for the sandwich model G/PVDF/G as compared with the calculated piezoelectric coefficient for pure PVDF ( = -42.2 pm/V computed in present work, and = -38.5 pm/V, obtained from J Mol Model 35 (2013) 19:3591-3602). When models incorporating one or several GO layers with 98 carbon atoms were considered, the piezoelectric coefficient was found to decrease to -14.6 pm/V for the one-sided PVDF/GO model and to -29.8 pm/V for the sandwich GO/PVDF/GO model as compared with the same calculated piezoelectric coefficient for pure PVDF.

18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 3): 347-359, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572545

RESUMO

Molecular organic single crystals of bis(L-asparaginium hydrogensquarate) monohydrate [BASQ; (C8H10N2O7)2·H2O] have been grown by solution technique. Crystallographic information was investigated by single-crystal X-ray diffraction (SCXRD) analysis. Hirshfeld surface and fingerprint plot studies were performed to understand the intermolecular interactions of the BASQ crystal in graphical representation. Functional group identification was studied with FT-IR (Fourier transform-IR) spectroscopy. The positions of proton and carbon atoms in the BASQ compound were analyzed using NMR spectroscopy. High transparency and a wide band gap of 3.49 eV were observed in the linear optical study by UV-vis-NIR spectroscopy. Intense and broad photoluminescence emissions at room temperature were observed in blue and blue-green regions. The frontier molecular orbitals of the BASQ molecule were obtained by the DFT/B3LYP method employing 6-311G** as the basis set. The dielectric study was carried out with temperature at various frequency ranges. The piezoelectric charge coefficient (d33) value of BASQ crystal was found to be 2 pC/N, which leads to its application in energy harvesting, mechanical sensors and actuators applications. In the non-linear optical study, the BASQ crystal showed promising SHG conversion efficiency. Mechanical properties of the BASQ crystal were studied experimentally by Vicker's microhardness technique, which revealed that the grown crystal belonged to the softer category. BASQ crystal void estimation reveals the mechanical strength and porosity of the material.

19.
Sci Rep ; 4: 6735, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25339424

RESUMO

Nano-graphene oxide (nano-GO) is a new class of carbon based materials being proposed for biomedical applications due to its small size, intrinsic optical properties, large specific surface area, and easy to functionalize. To fully exploit nano-GO properties, a reproducible method for its production is of utmost importance. Herein we report, the study of the sequential fracture of GO sheets onto nano-GO with controllable lateral width, by a simple, and reproducible method based on a mechanism that we describe as a confined hot spot atomic fragmentation/reduction of GO promoted by ultrasonication. The chemical and structural changes on GO structure during the breakage were monitored by XPS, FTIR, Raman and HRTEM. We found that GO sheets starts breaking from the defects region and in a second phase through the disruption of carbon bonds while still maintaining crystalline carbon domains. The breaking of GO is accompanied by its own reduction, essentially by the elimination of carboxylic and carbonyl functional groups. Photoluminescence and photothermal studies using this nano-GO are also presented highlighting the potential of this nanomaterial as a unique imaging/therapy platform.

20.
J Mol Model ; 19(9): 3591-602, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729009

RESUMO

In this work, computational molecular modeling and exploration was applied to study the nature of the negative piezoelectric effect in the ferroelectric polymer polyvinylidene fluoride (PVDF), and the results confirmed by actual nanoscale measurements. First principle calculations were employed, using various quantum-chemical methods (QM), including semi-empirical (PM3) and various density functional theory (DFT) approaches, and in addition combined with molecular mechanics (MM) methods in complex joint approaches (QM/MM). Both PVDF molecular chains and a unit cell of crystalline ß-phase PVDF were modeled. This computational molecular exploration clearly shows that the nature of the so-called negative piezo-electric effect in the ferroelectric PVDF polymer has a self-consistent quantum nature, and is related to the redistribution of the electron molecular orbitals (wave functions), leading to the shifting of atomic nuclei and reorganization of all total charges to the new, energetically optimal positions, under an applied electrical field. Molecular modeling and first principles calculations show that the piezoelectric coefficient d 33 has a negative sign, and its average values lies in the range of d 33 ~ -16.6 to -19.2 pC/N (or pm/V) (for dielectric permittivity ε = 5) and in the range of d 33 ~ -33.5 to -38.5 pC/N (or pm/V) (for ε = 10), corresponding to known data, and allowing us to explain the reasons for the negative sign of the piezo-response. We found that when a field is applied perpendicular to the PVDF chain length, as polarization increases the chain also stretches, increasing its length and reducing its height. For computed value of ε ~ 5 we obtained a value of d31 ~ +15.5 pC/N with a positive sign. This computational study is corroborated by measured nanoscale data obtained by atomic force and piezo-response force microscopy (AFM/PFM). This study could be useful as a basis for further insights into other organic and molecular ferroelectrics.


Assuntos
Modelos Moleculares , Polímeros/química , Polivinil/química , Modelos Químicos , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA