Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(18): 8740-8745, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988182

RESUMO

The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = -0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth's history.

2.
Nature ; 510(7506): 525-8, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965655

RESUMO

Varying levels of boreal summer insolation and associated Earth system feedbacks led to differing climate and ice-sheet states during late-Quaternary interglaciations. In particular, Marine Isotope Stage (MIS) 11 was an exceptionally long interglaciation and potentially had a global mean sea level 6 to 13 metres above the present level around 410,000 to 400,000 years ago, implying substantial mass loss from the Greenland ice sheet (GIS). There are, however, no model simulations and only limited proxy data to constrain the magnitude of the GIS response to climate change during this 'super interglacial', thus confounding efforts to assess climate/ice-sheet threshold behaviour and associated sea-level rise. Here we show that the south GIS was drastically smaller during MIS 11 than it is now, with only a small residual ice dome over southernmost Greenland. We use the strontium-neodymium-lead isotopic composition of proglacial sediment discharged from south Greenland to constrain the provenance of terrigenous silt deposited on the Eirik Drift, a sedimentary deposit off the south Greenland margin. We identify a major reduction in sediment input derived from south Greenland's Precambrian bedrock terranes, probably reflecting the cessation of subglacial erosion and sediment transport as a result of near-complete deglaciation of south Greenland. Comparison with ice-sheet configurations from numerical models suggests that the GIS lost about 4.5 to 6 metres of sea-level-equivalent volume during MIS 11. This is evidence for late-Quaternary GIS collapse after it crossed a climate/ice-sheet stability threshold that may have been no more than several degrees above pre-industrial temperatures.

3.
Chem Geol ; 5402020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34866642

RESUMO

The performance of multi-collector secondary ion mass spectrometry (MC-SIMS) for Mg isotope ratio analysis was evaluated using 17 olivine and 5 pyroxene reference materials (RMs). The Mg isotope composition of these RMs was accurately and precisely determined by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these measured isotope ratios were used to evaluate SIMS instrumental mass bias as a function of the forsterite (Fo) content of olivine. The magnitude of the Mg isotope matrix effects were ~3‰ in δ25Mg, and are a complex function of olivine Fo content, that ranged from Fo59.3 to Fo100. In addition to these Mg isotope matrix effects, Si+ ion yields and Mg+/Si+ ion ratios varied as a complex function of the Fo content of the olivine RMs. For example, Si+ ion yields varied by ~33%. Based on the observations, we propose instrumental bias correction procedures for SIMS Mg isotope analysis of olivine using a combination of Mg+/Si+ ratios and Fo content of olivine. Using this correction method, the accuracy of δ25Mg analyses is 0.3‰, except for analysis of olivine with Fo86-88 where instrumental biases and Mg+/Si+ ratios change dramatically with Fo content, making it more difficult to assess the accuracy of Mg isotope ratio measurements by SIMS over this narrow range of Fo content. Five pyroxene RMs (3 orthopyroxenes and 2 clinopyroxenes) show smaller ranges of instrumental bias (~1.4‰ in δ25Mg) as compared to the olivine RMs. The instrumental bias for the 3 orthopyroxene RMs do not define a linear relationship with respect to enstatite (En) content, that ranged from En85.5 -96.3. The clinopyroxene RMs have similar En and wollastonite (Wo) contents but have δ25Mg values that differ by 0.5‰ relative to their δ25Mg values determined by MC-ICP-MS. These results indicate that additional factors (e.g., minor element abundances) likely contribute to SIMS instrumental mass fractionation. In order to better correct for these SIMS matrix effects, additional pyroxene RMs with various chemical compositions and known Mg isotope ratios are needed.

4.
Proc Natl Acad Sci U S A ; 112(27): 8193-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26109570

RESUMO

Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ(56)Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 10(0)-10(3) y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 10(5)-10(6) y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean.


Assuntos
Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Sedimentos Geológicos/química , Ferro/metabolismo , Planeta Terra , Sedimentos Geológicos/microbiologia , Fenômenos Geológicos , Isótopos/metabolismo , Neodímio/metabolismo , Oceanos e Mares , Oxirredução , Datação Radiométrica , Água do Mar/química , Água do Mar/microbiologia , Fatores de Tempo
5.
Environ Sci Technol ; 50(16): 8661-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27291525

RESUMO

We report on stable Fe isotope fractionation during microbial and chemical reduction of structural Fe(III) in nontronite NAu-1. (56)Fe/(54)Fe fractionation factors between aqueous Fe(II) and structural Fe(III) ranged from -1.2 to +0.8‰. Microbial (Shewanella oneidensis and Geobacter sulfurreducens) and chemical (dithionite) reduction experiments revealed a two-stage process. Stage 1 was characterized by rapid reduction of a finite Fe(III) pool along the edges of the clay particles, accompanied by a limited release to solution of Fe(II), which partially adsorbed onto basal planes. Stable Fe isotope compositions revealed that electron transfer and atom exchange (ETAE) occurred between edge-bound Fe(II) and octahedral (structural) Fe(III) within the clay lattice, as well as between aqueous Fe(II) and structural Fe(III) via a transient sorbed phase. The isotopic fractionation factors decreased with increasing extent of reduction as a result of the depletion of the finite bioavailable Fe(III) pool. During stage 2, microbial reduction was inhibited while chemical reduction continued. However, further ETAE between aqueous Fe(II) and structural Fe(III) was not observed. Our results imply that the pool of bioavailable Fe(III) is restricted to structural Fe sites located near the edges of the clay particles. Blockage of ETAE distinguishes Fe(III) reduction of layered clay minerals from that of Fe oxyhydroxides, where accumulation of structural Fe(II) is much more limited.


Assuntos
Compostos Férricos/química , Ferro/química , Silicatos de Alumínio/química , Fracionamento Químico , Argila , Geobacter/metabolismo , Isótopos de Ferro/química , Minerais , Oxirredução , Shewanella/metabolismo
6.
Environ Sci Technol ; 49(5): 2786-95, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25671351

RESUMO

Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.


Assuntos
Silicatos de Alumínio/química , Compostos Ferrosos/química , Água/química , Argila , Ecologia , Oxirredução
7.
Environ Sci Technol ; 48(19): 11302-11, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25248028

RESUMO

Results from enriched (57)Fe isotope tracer experiments have shown that atom exchange can occur between structural Fe in Fe(III) oxides and aqueous Fe(II) with no formation of secondary minerals or change in particle size or shape. Here we derive a mass balance model to quantify the extent of Fe atom exchange between goethite and aqueous Fe(II) that accounts for different Fe pool sizes. We use this model to reinterpret our previous work and to quantify the influence of particle size and pH on extent of goethite exchange with aqueous Fe(II). Consistent with our previous interpretation, substantial exchange of goethite occurred at pH 7.5 (≈ 90%) and we observed little effect of particle size between nanogoethite (average size of 81 × 11 nm; ≈ 110 m(2)/g) and microgoethite (average size of 590 × 42 nm; ≈ 40 m(2)/g). Despite ≈ 90% of the bulk goethite exchanging at pH 7.5, we found no change in mineral phase, average particle size, crystallinity, or reactivity after reaction with aqueous Fe(II). At a lower pH of 5.0, no net sorption of Fe(II) was observed and significantly less exchange occurred accounting for less than the estimated proportion of surface Fe atoms in the particles. Particle size appears to influence the amount of exchange at pH 5.0 and we suggest that aggregation and surface area may play a role. Results from sequential chemical extractions indicate that (57)Fe accumulates in extracted Fe(III) goethite components. Isotopic compositions of the extracts indicate that a gradient of (57)Fe develops within the goethite with more accumulation of (57)Fe occurring in the more easily extracted Fe(III) that may be nearer to the surface.


Assuntos
Compostos de Ferro/química , Ferro/química , Minerais/química , Cristalização , Compostos Ferrosos/química , Concentração de Íons de Hidrogênio , Isótopos de Ferro/química , Tamanho da Partícula , Água/química
8.
Anal Chem ; 85(24): 11885-92, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24261311

RESUMO

The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.


Assuntos
Carbonatos/química , Lasers , Óxidos/química , Sulfetos/química , Raios Ultravioleta , Isótopos de Ferro/análise , Fatores de Tempo
9.
Environ Sci Technol ; 46(22): 12399-407, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22577839

RESUMO

The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.


Assuntos
Óxido Ferroso-Férrico/química , Compostos Ferrosos/química , Cobalto/química , Concentração de Íons de Hidrogênio , Isótopos de Ferro/química , Cinética , Metais Pesados/química , Radioisótopos/química , Espectroscopia de Mossbauer
10.
Environ Sci Technol ; 45(5): 1847-52, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21294566

RESUMO

Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si-HFO coprecipitate, to determine an equilibrium Fe(II)-HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si-HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)-HFO (56)Fe/(54)Fe fractionation factors of -3.17 ± 0.08 (2σ)‰ and -2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si-HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)-HFO (56)Fe/(54)Fe fractionation factor in the absence of silica may be ∼-3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.


Assuntos
Fracionamento Químico , Compostos Férricos/química , Isótopos de Ferro/química , Adsorção , Compostos Férricos/análise , Isótopos de Ferro/análise , Cinética , Oxirredução , Dióxido de Silício/química
11.
Astrobiology ; 21(1): 83-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580560

RESUMO

Chocolate Pots hot spring (CP) is an Fe-rich, circumneutral-pH geothermal spring in Yellowstone National Park. Relic hydrothermal systems have been identified on Mars, and modern hydrothermal environments such as CP are useful for gaining insight into potential pathways for generation of biosignatures of ancient microbial life on Earth and Mars. Fe isotope fractionation is recognized as a signature of dissimilatory microbial iron oxide reduction (DIR) in both the rock record and modern sedimentary environments. Previous studies in CP have demonstrated the presence of DIR in vent pool deposits and show aqueous-/solid-phase Fe isotope variations along the hot spring flow path that may be linked to this process. In this study, we examined the geochemistry and stable Fe isotopic composition of spring water and sediment core samples collected from the vent pool and along the flow path, with the goal of evaluating whether Fe isotopes can serve as a signature of past or present DIR activity. Bulk sediment Fe redox speciation confirmed that DIR is active within the hot spring vent pool sediments (but not in more distal deposits), and the observed Fe isotope fractionation between Fe(II) and Fe(III) is consistent with previous studies of DIR-driven Fe isotope fractionation. However, modeling of sediment Fe isotope distributions indicates that DIR does not produce a unique Fe isotopic signature of DIR in the vent pool environment. Because of rapid chemical and isotopic communication between the vent pool fluid and sediment, sorption of Fe(II) to Fe(III) oxides would produce an isotopic signature similar to DIR despite DIR-driven generation of large quantities of isotopically light solid-associated Fe(II). The possibility exists, however, for preservation of specific DIR-derived Fe(II) minerals such as siderite (which is present in the vent pool deposits), whose isotopic composition could serve as a long-term signature of DIR in relic hot spring environments.


Assuntos
Chocolate , Fontes Termais , Compostos Férricos , Sedimentos Geológicos , Ferro/análise , Isótopos , Oxirredução , Parques Recreativos
13.
Sci Adv ; 3(2): e1600922, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28164153

RESUMO

The timing and nature of igneous activity recorded at a single Mars ejection site can be determined from the isotope analyses of Martian meteorites. Northwest Africa (NWA) 7635 has an Sm-Nd crystallization age of 2.403 ± 0.140 billion years, and isotope data indicate that it is derived from an incompatible trace element-depleted mantle source similar to that which produced a geochemically distinct group of 327- to 574-million-year-old "depleted" shergottites. Cosmogenic nuclide data demonstrate that NWA 7635 was ejected from Mars 1.1 million years ago (Ma), as were at least 10 other depleted shergottites. The shared ejection age is consistent with a common ejection site for these meteorites. The spatial association of 327- to 2403-Ma depleted shergottites indicates >2 billion years of magmatism from a long-lived and geochemically distinct volcanic center near the ejection site.

14.
Astrobiology ; 13(11): 1091-101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24219169

RESUMO

Chocolate Pots Hot Springs in Yellowstone National Park is a hydrothermal system that contains high aqueous ferrous iron [∼0.1 mM Fe(II)] at circumneutral pH conditions. This site provides an ideal field environment in which to test our understanding of Fe isotope fractionations derived from laboratory experiments. The Fe(III) oxides, mainly produced through Fe(II) oxidation by oxygen in the atmosphere, have high 56Fe/54Fe ratios compared with the aqueous Fe(II). However, the degree of fractionation is less than that expected in a closed system at isotopic equilibrium. We suggest two explanations for the observed Fe isotope compositions. One is that light Fe isotopes partition into a sorbed component and precipitate out on the Fe(III) oxide surfaces in the presence of silica. The other explanation is internal regeneration of isotopically heavy Fe(II) via dissimilatory Fe(III) reduction farther down the flow path as well as deeper within the mat materials. These findings provide evidence that silica plays an important role in governing Fe isotope fractionation factors between reduced and oxidized Fe. Under conditions of low ambient oxygen, such as may be found on early Earth or Mars, significantly larger Fe isotope variations are predicted, reflecting the more likely attainment of Fe isotope equilibrium associated with slower oxidation rates under low-O2 conditions.


Assuntos
Compostos Férricos/análise , Fontes Termais/química , Ferro/análise , Fracionamento Químico , Compostos Férricos/química , Ferro/química , Isótopos de Ferro/análise , Oxirredução , Wyoming
15.
Science ; 335(6068): 538; author reply 538, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22301304

RESUMO

Guilbaud et al. (Reports, 24 June 2011, p. 1548) suggest that the geologic record of Fe isotope fractionation can be explained by abiological precipitation of pyrite. We argue that a detailed understanding of the depositional setting, mineralogy, and geologic history of Precambrian sedimentary rocks indicates that the Fe isotope record dominantly reflects biological fractionations and Fe redox processes.


Assuntos
Isótopos de Ferro/química , Ferro/química , Sulfetos/química
16.
Science ; 333(6042): 620-3, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21798947

RESUMO

To ascertain the response of the southern Greenland Ice Sheet (GIS) to a boreal summer climate warmer than at present, we explored whether southern Greenland was deglaciated during the Last Interglacial (LIG), using the Sr-Nd-Pb isotope ratios of silt-sized sediment discharged from southern Greenland. Our isotope data indicate that no single southern Greenland geologic terrane was completely deglaciated during the LIG, similar to the Holocene. Differences in sediment sources during the LIG relative to the early Holocene denote, however, greater southern GIS retreat during the LIG. These results allow the evaluation of a suite of GIS models and are consistent with a GIS contribution of 1.6 to 2.2 meters to the ≥4-meter LIG sea-level highstand, requiring a significant sea-level contribution from the Antarctic Ice Sheet.

17.
Environ Sci Technol ; 43(4): 1102-7, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19320165

RESUMO

The reaction of aqueous Fe(II) with Fe(III) oxides is a complex process, comprising sorption, electron transfer, and in some cases, reductive dissolution and transformation to secondary minerals. To better understand the dynamics of these reactions, we measured the extent and rate of Fe isotope exchange between aqueous Fe(II) and goethite using a 57Fe isotope tracer approach. We observed near-complete exchange of Fe atoms between the aqueous phase and goethite nanorods over a 30-day time period. Despite direct isotopic evidence for extensive mixing between the aqueous and goethite Fe, no phase transformation was observed, nor did the size or shape of the goethite rods change appreciably. High-resolution transmission electron microscopy images, however, appear to indicate that some recrystallization of the goethite particles may have occurred. Near-complete exchange of Fe between aqueous Fe(II) and goethite, coupled with negligible change in the goethite mineralogy and morphology, suggests a mechanism of coupled growth (via sorption and electron transfer) and dissolution at separate crystallographic goethite sites. We propose that sorption and dissolution sites are linked via conduction through the bulk crystal, as was recently demonstrated for hematite. Extensive mixing between aqueous Fe(II) and goethite, a relatively stable iron oxide, has significant implications for heavy metal sequestration and release (e.g., arsenic and uranium), as well as reduction of soil and groundwater contaminants.


Assuntos
Química Inorgânica/métodos , Compostos de Ferro/química , Isótopos de Ferro/química , Ferro/química , Água/química , Minerais , Modelos Químicos , Oxirredução , Tamanho da Partícula , Fatores de Tempo
18.
Talanta ; 71(1): 90-6, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19071272

RESUMO

Iron isotope fractionation between liquid and vapor iron pentacarbonyl was measured in a closed system at approximately 0 and approximately 21 degrees C to determine if Fe isotope analysis of iron pentacarbonyl vapor is viable using electron-impact, gas-source mass spectrometry. At the 2sigma level, there is no significant Fe isotope fractionation between vapor and liquid under conditions thought to reflect equilibrium. Experiments at approximately 0 degrees C indicate iron pentacarbonyl vapor is approximately 0.05 per mil (per thousand) greater in (56)Fe/(54)Fe than liquid iron pentacarbonyl, which is just resolvable at the 1sigma level. Partial decomposition of iron pentacarbonyl vapor or liquid to an iron oxide or iron metal shows that significant isotopic fractionation occurs, where the decomposed product has a lower (56)Fe/(54)Fe ratio as compared to the starting iron pentacarbonyl. It follows that methods to decompose iron pentacarbonyl must be quantitative to obtain accurate isotope values.

19.
Environ Sci Technol ; 39(17): 6698-704, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16190229

RESUMO

Microbial dissimilatory iron reduction (DIR) is an important pathway for carbon oxidation in anoxic sediments, and iron isotopes may distinguish between iron produced by DIR and other sources of aqueous Fe(II). Previous studies have shown that aqueous Fe(II) produced during the earliest stages of DIR has delta56Fe values that are 0.5-2.0%o lowerthan the initial Fe(III) substrate. The new experiments reported here suggest that this fractionation is controlled by coupled electron and Fe atom exchange between Fe(II) and Fe(III) at iron oxide surfaces. In hematite and goethite reduction experiments with Geobacter sulfurreducens, the 56Fe/54Fe isotopic fractionation between aqueous Fe(II) and the outermost layers of Fe(III) on the oxide surface is approximately -3%o and can be explained by equilibrium Fe isotope partitioning between reactive Fe(II) and Fe(III) pools that coexist during DIR. The results indicate that sorption of Fe(II) to Fe(III) substrates cannot account for production of low-delta56Fe values for aqueous Fe(II) during DIR.


Assuntos
Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Sedimentos Geológicos/microbiologia , Isótopos de Ferro/química , Adsorção , Anaerobiose , Elétrons , Compostos Férricos/química , Compostos Ferrosos/química , Sedimentos Geológicos/química , Oxirredução , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA