Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847909

RESUMO

Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.

2.
Neurochem Res ; 49(4): 935-948, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141130

RESUMO

Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.


Assuntos
Proteínas de Caenorhabditis elegans , Canabidiol , Canabinoides , Humanos , Animais , Canabidiol/farmacologia , Dronabinol/farmacologia , Caenorhabditis elegans , Proteômica , Dor , Analgésicos/farmacologia , Mamíferos , Receptores Acoplados a Proteínas G
3.
Neurochem Res ; 48(6): 1900-1911, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36737562

RESUMO

Vanilloids, including capsaicin and eugenol, are ligands of transient receptor potential channel vanilloid subfamily member 1 (TRPV1). Prolonged treatment with vanilloids triggered the desensitization of TRPV1, leading to analgesic or antinociceptive effects. Caenorhabditis elegans (C. elegans) is a model organism expressing vanilloid receptor orthologs (e.g., OSM-9 and OCR-2) that are associated with behavioral and physiological processes, including sensory transduction. We have shown that capsaicin and eugenol hamper the nocifensive response to noxious heat in C. elegans. The objective of this study was to perform proteomics to identify proteins and pathways responsible for the induced phenotype and to identify capsaicin and eugenol targets using a thermal proteome profiling (TPP) strategy. The results indicated hierarchical differences following Reactome Pathway enrichment analyses between capsaicin- and eugenol-treated nematodes. However, both treated groups were associated mainly with signal transduction pathways, energy generation, biosynthesis and structural processes. Wnt signaling, a specific signal transduction pathway, is involved following treatment with both molecules. Wnt signaling pathway is noticeably associated with pain. The TPP results show that capsaicin and eugenol target OCR-2 but not OSM-9. Further protein-protein interaction (PPI) analyses showed other targets associated with enzymatic catalysis and calcium ion binding activity. The resulting data help to better understand the broad-spectrum pharmacological activity of vanilloids.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Capsaicina/farmacologia , Eugenol/farmacologia , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Analgésicos/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
4.
Biomed Chromatogr ; 37(7): e5531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36269018

RESUMO

Targeted mass spectrometry is extensively used for the quantitative measurement of various molecules present in complex matrices. It is certainly one of the most important analytical duties in a mass spectrometry laboratory. Systematic development of selected-reaction monitoring (SRM), multiple-reaction monitoring (MRM) and parallel-reaction monitoring (PRM) methods for targeted mass spectrometry-based analysis was performed without considering future opportunities. The advancement of hardware and software technologies has resulted in greater resolution, accuracy, speed and depth. For sure, SRM, MRM or PRM acquisitions can quantify molecules very accurately at trace levels. However, they do not provide datasets allowing future data mining. Obviously, we cannot truly quantify something that we do not know is there. However, using non-targeted data acquisition for target analysis, we can generate a MS1 and MS2 digital libraries of each sample, providing future proof datasets. This is instrumental for data mining following new questions potentially arising in time permitting new and deeper processing and interpretation. This perspective article provides thoughts on why we believe it is time to question the status quo in targeted mass spectrometry.


Assuntos
Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos
5.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003530

RESUMO

Validating animal pain models is crucial to enhancing translational research and response to pharmacological treatment. This study investigated the effects of a calibrated slight exercise protocol alone or combined with multimodal analgesia on sensory sensitivity, neuroproteomics, and joint structural components in the MI-RAT model. Joint instability was induced surgically on day (D) 0 in female rats (N = 48) distributed into sedentary-placebo, exercise-placebo, sedentary-positive analgesic (PA), and exercise-PA groups. Daily analgesic treatment (D3-D56) included pregabalin and carprofen. Quantitative sensory testing was achieved temporally (D-1, D7, D21, D56), while cartilage alteration (modified Mankin's score (mMs)) and targeted spinal pain neuropeptide were quantified upon sacrifice. Compared with the sedentary-placebo (presenting allodynia from D7), the exercise-placebo group showed an increase in sensitivity threshold (p < 0.04 on D7, D21, and D56). PA treatment was efficient on D56 (p = 0.001) and presented a synergic anti-allodynic effect with exercise from D21 to D56 (p < 0.0001). Histological assessment demonstrated a detrimental influence of exercise (mMs = 33.3%) compared with sedentary counterparts (mMs = 12.0%; p < 0.001), with more mature transformations. Spinal neuropeptide concentration was correlated with sensory sensitization and modulation sites (inflammation and endogenous inhibitory control) of the forced mobility effect. The surgical MI-RAT OA model coupled with calibrated slight exercise demonstrated face and predictive validity, an assurance of higher clinical translatability.


Assuntos
Neuropeptídeos , Osteoartrite , Animais , Feminino , Roedores , Dor/tratamento farmacológico , Osteoartrite/patologia , Neuropeptídeos/uso terapêutico , Analgésicos/farmacologia
6.
Neurochem Res ; 47(8): 2416-2430, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716295

RESUMO

Myocardial infraction (MI) is the principal risk factor for the onset of heart failure (HF). Investigations regarding the physiopathology of MI progression to HF have revealed the concerted engagement of other tissues, such as the autonomic nervous system and the medulla oblongata (MO), giving rise to systemic effects, important in the regulation of heart function. Cardiac sympathetic afferent denervation following application of resiniferatoxin (RTX) attenuates cardiac remodelling and restores cardiac function following MI. While the physiological responses are well documented in numerous species, the underlying molecular responses during the initiation and progression from MI to HF remains unclear. We obtained multi-tissue time course proteomics with a murine model of HF induced by MI in conjunction with RTX application. We isolated tissue sections from the left ventricle (LV), MO, cervical spinal cord and cervical vagal nerves at four time points over a 12-week study. Bioinformatic analyses consistently revealed a high statistical enrichment for metabolic pathways in all tissues and treatments, implicating a central role of mitochondria in the tissue-cellular response to both MI and RTX. In fact, the additional functional pathways found to be enriched in these tissues, involving the cytoskeleton, vesicles and signal transduction, could be downstream of responses initiated by mitochondria due to changes in neuronal pulse frequency after a shock such as MI or the modification of such frequency communication from the heart to the brain after RTX application. Development of future experiments, based on our proteomic results, should enable the dissection of more precise mechanisms whereby metabolic changes in neuronal and cardiac tissues can effectively ameliorate the negative physiological effects of MI via RTX application.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Denervação , Modelos Animais de Doenças , Redes e Vias Metabólicas , Camundongos , Infarto do Miocárdio/metabolismo , Proteômica , Transdução de Sinais
7.
Neurochem Res ; 47(3): 622-633, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34694534

RESUMO

Resiniferatoxin (RTX) is a metabolite extracted from Euphorbia resinifera. RTX is a potent capsaicin analog with specific biological activities resulting from its agonist activity with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1). RTX has been examined as a pain reliever, and more recently, investigated for its ability to desensitize cardiac sensory fibers expressing TRPV1 to improve chronic heart failure (CHF) outcomes using validated animal models. Caenorhabditis elegans (C. elegans) expresses orthologs of vanilloid receptors activated by capsaicin, producing antinociceptive effects. Thus, we used C. elegans to characterize the antinociceptive properties and performed proteomic profiling to uncover specific signaling networks. After exposure to RTX, wild-type (N2) and mutant C. elegans were placed on petri dishes divided into quadrants for heat stimulation. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that RTX can hamper the nocifensive response of C. elegans to noxious heat (32 - 35 °C). The effect was reversed 6 h after RTX exposure. Additionally, we identified the RTX target, the C. elegans transient receptor potential channel OCR-3. The proteomics and pathway enrichment analysis results suggest that Wnt signaling is triggered by the agonistic effects of RTX on C. elegans vanilloid receptors.


Assuntos
Caenorhabditis elegans , Diterpenos , Animais , Diterpenos/farmacologia , Temperatura Alta , Proteômica , Canais de Cátion TRPV/metabolismo , Via de Sinalização Wnt
8.
Rapid Commun Mass Spectrom ; 36(20): e9373, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35933590

RESUMO

RATIONALE: The COVID-19 pandemic demonstrated the importance of high-throughput analysis for public health. Given the importance of surface viral proteins for interactions with healthy tissue, they are targets of interest for mass spectrometry-based analysis. For that reason, the possibility of detecting and quantifying peptides using a high-throughput technique, laser diode thermal desorption-triple quadrupole mass spectrometry (LDTD-QqQMS), was explored. METHODS: Two peptides used as models for small peptides (leu-enkephalin and endomorphin-2) and four tryptic peptides (GVYYPDK, NIDGYFK, IADYNYK, and QIAPGQTGK) specific to the SARS-CoV-2 Spike protein were employed. Target peptides were analyzed individually in the positive mode by LDTD-QqQMS. Peptides were quantified by internal calibration using selected reaction monitoring transitions in pure solvents and in samples spiked with 20 µg mL-1 of a bovine serum albumin tryptic digest to represent real analysis conditions. RESULTS: Low-energy fragment ions (b and y ions) as well as high-energy fragment ions (c and x ions) and some of their corresponding water or ammonia losses were detected in the full mass spectra. Only for the smallest peptides, leu-enkephalin and endomorphin-2, were [M + H]+ ions observed. Product ion spectra confirmed that, with the experimental conditions used in the present study, LDTD transfers a considerable amount of energy to the target peptides. Quantitative analysis showed that it was possible to quantify peptides using LDTD-QqQMS with acceptable calibration curve linearity (R2 > 0.99), precision (RSD < 18.2%), and trueness (bias < 8.3%). CONCLUSIONS: This study demonstrated for the first time that linear peptides can be qualitatively and quantitatively analyzed using LDTD-QqQMS. Limits of quantification and dynamic ranges are still inadequate for clinical applications, but other applications where higher levels of proteins must be detected could be possible with LDTD. Given the high-throughput capabilities of LDTD-QqQMS (>15 000 samples in less than 43 h), more studies are needed to improve the sensitivity for peptide analysis of this technique.


Assuntos
COVID-19 , Espectrometria de Massas em Tandem , Encefalina Leucina , Humanos , Íons , Lasers , Pandemias , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Espectrometria de Massas em Tandem/métodos
9.
Biomed Chromatogr ; 36(9): e5423, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35684931

RESUMO

A rapid, selective and sensitive method was developed and validated for the determination of LY-404,039 concentration in rat plasma using a butylation derivatization step to improve chromatographic characteristics and enhance signal intensity. The method consisted of a protein precipitation extraction followed by derivatization with butanol/HCl and analysis by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The separation was achieved using a 100 × 2.1 mm (2.6 µm) Thermo Scientific Accucore RP-MS column combined with an isocratic mobile phase composed of 40:60 acetonitrile-0.1% formic acid in water. An analytical range of 2.0-1,000 ng/ml was validated and used to quantify LY-404,039 in rat plasma. The novel method met all of the requirements of specificity, sensitivity, linearity, precision, accuracy and stability. A pharmacokinetic study was performed in rats and the novel analytical method was used as a routine analysis method to provide enhanced measurements of plasma concentrations of LY-404,039. The plasma pharmacokinetic results indicate very short terminal half-life (0.27 h ± 0.8) and high clearance (0.97 L/h/kg ± 0.12), suggesting that LY-404,039 is rapidly eliminated in the rat. Dose-dependent pharmacokinetics were observed following subcutaneous administration of LY-404,039 at doses of 0.1, 0.3 and 1.0 mg/kg.


Assuntos
Glutamatos , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cinética , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
10.
Neurochem Res ; 46(2): 252-264, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33123873

RESUMO

Eugenol, a known vanilloid, was frequently used in dentistry as a local analgesic in addition, antibacterial and neuroprotective effects were also reported. Eugenol, capsaicin and many vanilloids are interacting with the transient receptor potential vanilloid 1 (TRPV1) in mammals and the TRPV1 is activated by noxious heat. The pharmacological manipulation of the TRPV1 has been shown to have therapeutic value. Caenorhabditis elegans (C. elegans) express TRPV orthologs (e.g. OCR-2, OSM-9) and it is a commonly used animal model system to study nociception as it displays a well-defined and reproducible nocifensive behavior. After exposure to vanilloid solutions, C. elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The results showed that eugenol, vanillin and zingerone can hamper nocifensive response of C. elegans to noxious heat (32-35 °C) following a sustained exposition. Also, the effect was reversed 6 h post exposition. Furthermore, eugenol and vanillin did not target specifically the OCR-2 or OSM-9 but zingerone did specifically target the OCR-2 similarly to capsaicin. Further structural and physicochemical analyses were performed. Key parameters for quantitative structure-property relationships (QSPR), quantitative structure-activity relationships (QSAR) and frontier orbital analyses suggest similarities and dissimilarities amongst the tested vanilloids and capsaicin in accordance with the relative anti-nociceptive effects observed.


Assuntos
Analgésicos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Benzaldeídos/farmacologia , Capsaicina/farmacologia , Eugenol/farmacologia , Guaiacol/análogos & derivados , Analgésicos/química , Animais , Benzaldeídos/química , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Capsaicina/química , Eugenol/química , Guaiacol/química , Guaiacol/farmacologia , Temperatura Alta , Estrutura Molecular , Proteínas do Tecido Nervoso/metabolismo , Nociceptividade/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Canais de Cátion TRPV/metabolismo
11.
J Zoo Wildl Med ; 51(4): 896-904, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33480570

RESUMO

Trazodone is an antianxiety medication commonly used in human and veterinary medicine. Stress-related trauma is the leading cause of morbidity and mortality in wild ruminant species. Trazodone could reduce stress and allow safer capture and handling, thus having a positive effect on their welfare. The objective of this study was to describe the clinical effects and pharmacokinetic profile of an oral dose of trazodone in domestic goats (Capra hircus) as a model for wild ruminants. A pilot study using ethograms and accelerometers identified an oral dose of 10 mg/kg as optimal to reduce activity levels. This dose resulted in a 502% increase in time spent sleeping (P=0.0016) and a 623% increase in time spent lying down (P=0.01). Additionally, there were reductions of 72% in time spent grooming (P=0.02), 49% in time spent moving (P=0.01), and 87% in time spent observing (P=0.0002). Activity levels were significantly decreased by 31% for 4 hr following administration (P=0.049). There were no observed adverse effects. Time spent eating or ruminating was not affected by trazodone administration (P > 0.05). The pharmacokinetics of trazodone following a single oral dose of 10 mg/kg in 7 goats was assessed. All animals achieved plasma concentrations over 130 ng/ml, a level considered therapeutic in humans and dogs, for a mean of 6.4 ± 5.0 hr. Mean terminal half-life was 10.55 ± 6.80 hr. All goats achieved maximum concentration within 5-15 min and still had detectable plasma levels at 24 hr. Trazodone appears promising to decrease stress in exotic ruminant species. Further research is warranted to establish its efficacy in other ruminant species and clinical situations.


Assuntos
Ansiolíticos/farmacocinética , Cabras/sangue , Trazodona/farmacocinética , Administração Oral , Animais , Ansiolíticos/sangue , Ansiolíticos/metabolismo , Esquema de Medicação , Masculino , Projetos Piloto , Trazodona/sangue , Trazodona/metabolismo
12.
J Zoo Wildl Med ; 52(2): 529-537, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34130395

RESUMO

Postoperative antinociception control in fish is currently suboptimal, as commonly used antiinflammatory drugs last for only a few hours at tested temperatures. Therefore, long-acting anti-inflammatory drugs, such as robenacoxib, could improve the welfare of fish. The pharmacokinetics, duration of antinociceptive action, and potential adverse effects of robenacoxib were evaluated through two prospective randomized blinded trials in rainbow trout (Oncorhynchus mykiss). Six healthy rainbow trout received a single IM administration of robenacoxib (2 mg/kg), and two control fish received the same volume of saline IM. Blood samples were collected at predetermined time points for 5 d. Plasma robenacoxib concentrations were measured using high-performance liquid chromatography-high-resolution hybrid orbitrap mass spectrometry and noncompartmental pharmacokinetic analysis. Ten additional rainbow trout received an intralabial injection of 0.05 ml of 2% acetic acid following a previously validated nociceptive model. The treated group (n = 6) received 2 mg/kg of robenacoxib IM and the control group (n = 4) received an equivalent volume of saline IM. The behavior, appetite, and opercular rate of the fish were evaluated every hour for 5 h, then once daily for 3 d. All 12 treated trout and 6 controls underwent histopathologic evaluation. Average maximum plasma concentration (Cmax) was 329.9 ± 137.3 ng/ml observed at 2.1 ± 0.7 h (Tmax) and terminal half-life was 12.6 ± 2.27 h. Plasma concentrations described as antinociceptive in domestic carnivores were measured for 3-4 d. This dose was associated with a significant decrease in rocking behavior (P = 0.017). No adverse effects were detected clinically nor on histopathology. Robenacoxib administered IM at 2 mg/kg appears to be safe and may provide an antinociceptive effect in rainbow trout. This study presents a new therapeutic option to provide long-lasting antinociception in rainbow trout.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacocinética , Difenilamina/análogos & derivados , Oncorhynchus mykiss/sangue , Fenilacetatos/farmacocinética , Animais , Área Sob a Curva , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Difenilamina/efeitos adversos , Difenilamina/farmacocinética , Feminino , Meia-Vida , Masculino , Fenilacetatos/efeitos adversos
13.
Neurochem Res ; 45(8): 1851-1859, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32418082

RESUMO

Capsaicin is the most abundant pungent molecule identified in red chili peppers, and it is widely used for food flavoring, in pepper spray for self-defense devices and recently in ointments for the relief of neuropathic pain. Capsaicin and several other related vanilloid compounds are secondary plant metabolites. Capsaicin is a selective agonist of the transient receptor potential channel, vanilloid subfamily member 1 (TRPV1). After exposition to vanilloid solution, Caenorhabditis elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The data revealed for the first-time that capsaicin can impede nocifensive response of C. elegans to noxious heat (32-35 °C) following a sustained exposition. The effect was reversed 6 h post capsaicin exposition. Additionally, we identified the capsaicin target, the C. elegans transient receptor potential channel OCR-2 and not OSM-9. Further experiments also undoubtedly revealed anti-nociceptive effect for capsaicin analogues, including olvanil, gingerol, shogaol and curcumin.


Assuntos
Analgésicos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Temperatura Alta , Resposta Táctica/efeitos dos fármacos , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Cátion TRPV/metabolismo
14.
Neurochem Res ; 45(4): 882-890, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31950452

RESUMO

In mammals, glutamate is an important excitatory neurotransmitter. Glutamate and glutamate receptors are found in areas specifically involved in pain sensation, transmission and transduction such as peripheral nervous system, spinal cord and brain. In C. elegans, several studies have suggested glutamate pathways are associated with withdrawal responses to mechanical stimuli and to chemical repellents. However, few evidences demonstrate that glutamate pathways are important to mediate nocifensive response to noxious heat. The thermal avoidance behavior of C. elegans was studied and results illustrated that mutants of glutamate receptors (glr-1, glr-2, nmr-1, nmr-2) behaviors was not affected. However, results revealed that all strains of eat-4 mutants, C. elegans vesicular glutamate transporters, displayed defective thermal avoidance behaviors. Due to the interplay between the glutamate and the FLP-18/FLP-21/NPR-1 pathways, we analyzed the effectors FLP-18 and FLP-21 at the protein level, we did not observe biologically significant differences compared to N2 (WT) strain (fold-change < 2) except for the IK602 strain. The data presented in this manuscript reveals that glutamate signaling pathways are essential to elicit a nocifensive response to noxious heat in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Temperatura Alta , Nociceptividade/fisiologia , Receptores de Glutamato/metabolismo , Resposta Táctica/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia
15.
J Neural Transm (Vienna) ; 127(10): 1343-1358, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860561

RESUMO

The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset has been used extensively to model Parkinson's disease, L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia and, more recently, dopaminergic psychosis. Whereas several experimental drugs have been tested in this primate, many of which subsequently underwent clinical trials, efficacy thresholds in the marmoset that would predict efficacy in the clinic are lacking. Here, we aimed to determine such efficacy end points that would be indicative of likely efficacy in clinical studies. To do so, we used the evidence-based medicine reviews published by the International Parkinson and Movement Disorder Society (IPMDS) to select drugs that were rated as clinically efficacious, likely efficacious or not efficacious for the treatment of parkinsonism, dyskinesia and psychosis. We then reviewed the literature in the MPTP-lesioned marmoset and identified articles reporting the effects of drugs that were included in the IPMDS recommendations, following which we estimated efficacy thresholds in the marmoset that would predict efficacy at the clinical level. We propose that, when drugs are administered as monotherapy, ≥ 50% reduction of global parkinsonism may be necessary to predict the possibility of clinical efficacy. As adjunct to a low dose of L-DOPA, we propose that an additional reduction of global parkinsonism ≥ 25% might predict clinical efficacy. As adjunct to an optimal dose of L-DOPA, we propose that additional anti-parkinsonian benefit ≥ 20%, with global parkinsonism as the end point, might predict clinical efficacy. For the treatment of dyskinesia, we suggest that the predictability threshold be set at ≥ 25% reduction of peak dose dyskinesia, while we believe that this threshold should be > 50% reduction of peak dose psychosis-like behaviours for psychosis-related end points. This article represents the first step in determining what efficacy might be necessary to achieve in pre-clinical studies in the MPTP-lesioned marmoset prior to confidently advancing drugs to clinical trials. We hope that it will help in the drug discovery and development process, notably by avoiding exposing patients to drugs that have little probability of clinical efficacy based upon pre-clinical experiments.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/uso terapêutico , Comportamento Animal , Callithrix , Humanos , Levodopa
16.
BMC Vet Res ; 16(1): 154, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448336

RESUMO

BACKGROUND: Buprenorphine is used for canine postoperative pain management. This study aimed to describe the pharmacokinetics and evaluate the analgesic efficacy of buprenorphine (Simbadol, 1.8 mg/mL) administered by different routes in dogs undergoing ovariohysterectomy. Twenty-four dogs were included in a randomized, prospective, masked, clinical trial. Buprenorphine (0.02 mg/kg) was administered intravenously (IV), intramuscularly (IM) or subcutaneously (SC) (n = 8/group) 0.5 h before general anesthesia with propofol-isoflurane. Carprofen (4.4 mg/kg SC) was administered after anesthetic induction and before ovariohysterectomy. Pain was scored using the short-form Glasgow composite pain scale for dogs (SF-GCPS). Dogs were administered morphine (0.25 mg/kg IV) when SF-GCPS scores were ≥ 5/20. Blood sampling was performed up to 720 min after drug administration. Plasma buprenorphine and norbuprenorphine concentrations were analyzed using liquid chromatography mass spectrometry. Pharmacokinetics of buprenorphine was described using a non-compartmental model (PK Solver 2.0). Statistical analysis was performed using linear mixed models and Fisher's exact test (p < 0.05). RESULTS: Pain scores were significantly higher than baseline after IV (0.5-2 h), IM (0.5-3 h) and SC (0.5-4 h) but not among groups. Prevalence of rescue analgesia was significantly higher in SC (7/8 dogs) than IV (2/8) but not different between IV and IM (3/8) or IM and SC. The frequency of rescue analgesia was not significantly different among groups (IV = 2, IM = 5 and SC = 9). Norbuprenorphine was not detected. For IV, IM and SC administration, clearance was 1.29, 1.65 and 1.40 L/hour/kg, volume of distribution was 6.8, 14.2 and 40.1 L/kg, the elimination half-life was 3.7, 5.7, 22 h, and the area under the plasma concentration-time curved extrapolated to infinity was 15.7, 12.4 and 16.4 ng/mL/hour, respectively. Bioavailability for IM and SC was 62.6 and 40%, respectively. Maximum plasma concentrations of buprenorphine were 6.2 and 1.3 ng/mL at 0.14 and 0.33 h after IM and SC administration, respectively. CONCLUSIONS: The route of administration influences the analgesic efficacy of buprenorphine in dogs. SC administration of buprenorphine failed to provide clinical analgesia due to erratic drug absorption. At the doses administered, the IV and IM routes are preferred for postoperative analgesia.


Assuntos
Analgésicos Opioides/farmacocinética , Buprenorfina/farmacocinética , Cães/cirurgia , Dor Pós-Operatória/veterinária , Administração Intravenosa/veterinária , Analgesia/veterinária , Analgésicos Opioides/administração & dosagem , Animais , Buprenorfina/administração & dosagem , Feminino , Histerectomia/veterinária , Injeções Intramusculares/veterinária , Injeções Subcutâneas/veterinária , Ovariectomia/veterinária , Medição da Dor/veterinária , Dor Pós-Operatória/tratamento farmacológico , Estudos Prospectivos
17.
Can J Physiol Pharmacol ; 98(7): 431-440, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32017606

RESUMO

The availability of agonists and antagonists to modulate the activity of the 5-hydroxytryptamine (5-HT) type 3 (5-HT3) receptor has renewed interest in its role as a therapeutic target. Ondansetron is a highly selective 5-HT3 receptor antagonist that is well tolerated as an anti-emetic for patients undergoing chemotherapy. Preclinical studies in rat have shown the effects of small doses of ondansetron on cognition, behavioural sensitisation, and epilepsy. However, the pharmacokinetic (PK) profile of ondansetron in rat has not been described, which limits the translational relevance of these findings. Here, we aim to determine, in the rat, the PK profile of ondansetron in the plasma and to determine associated brain levels. The plasma PK profile was determined following acute subcutaneous administration of ondansetron (0.1, 1, and 10 µg/kg). Brain levels were measured following subcutaneous administration of ondansetron at 1 µg/kg. Plasma and brain levels of ondansetron were determined using high-performance liquid chromatography - tandem mass spectrometry. Following administration of all three doses, measured ondansetron plasma levels (≈30-3000 pg/mL) were below levels achieved with doses usually administered in the clinic, with a rapid absorption phase and a short half-life (≈30-40 min). We also found that brain levels of ondansetron at 1 µg/kg were significantly lower than plasma levels, with brain to plasma ratios of 0.45 and 0.46 in the motor and pre-frontal cortices. We discuss our findings in the context of a minireview of the literature. We hope that our study will be helpful to the design of preclinical studies with therapeutic end-points.


Assuntos
Ondansetron/farmacocinética , Antagonistas do Receptor 5-HT3 de Serotonina/farmacocinética , Absorção Fisiológica , Animais , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Injeções Intravenosas , Injeções Subcutâneas , Masculino , Modelos Animais , Ondansetron/administração & dosagem , Ratos , Antagonistas do Receptor 5-HT3 de Serotonina/administração & dosagem , Distribuição Tecidual
18.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31262835

RESUMO

In open environments such as water, enterohemorrhagic Escherichia coli O157:H7 responds to inorganic phosphate (Pi) starvation by inducing the Pho regulon controlled by PhoB. This activates the phosphate-specific transport (Pst) system that contains a high-affinity Pi transporter. In the Δpst mutant, PhoB is constitutively activated and regulates the expression of genes in the Pho regulon. Here, we show that Pi starvation and deletion of the pst system enhance E. coli O157:H7 biofilm formation. Among differentially expressed genes of EDL933 grown under Pi starvation conditions and in the Δpst mutant, we have found that a member of the PhoB regulon, waaH, predicted to encode a glycosyltransferase, was highly expressed. Interestingly, WaaH contributed to biofilm formation of E. coli O157:H7 during both Pi starvation and in the Δpst mutant. In the Δpst mutant, the presence of waaH was associated with lipopolysaccharide (LPS) R3 core type modifications, whereas in E. coli O157:H7, waaH overexpression had no effect on LPS structure during Pi starvation. Therefore, waaH participates in E. coli O157:H7 biofilm formation during Pi starvation, but its biochemical role remains to be clarified. This study highlights the importance of the Pi starvation stress response to biofilm formation, which may contribute to the persistence of E. coli O157:H7 in the environment.IMPORTANCE Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen that causes bloody diarrhea that can result in renal failure. Outside of mammalian hosts, E. coli O157:H7 survives for extended periods of time in nutrient-poor environments, likely as part of biofilms. In E. coli K-12, the levels of free extracellular Pi affect biofilm formation; however, it was unknown whether Pi influences biofilm formation by E. coli O157:H7. Our results show that upon Pi starvation, PhoB activates waaH expression, which favors biofilm formation by E. coli O157:H7. These findings suggest that WaaH is a target for controlling biofilm formation. Altogether, our work demonstrates how adaptation to Pi starvation allows E. coli O157:H7 to occupy different ecological niches.


Assuntos
Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Hexosiltransferases/metabolismo , Fosfatos/farmacologia , Fatores de Transcrição/metabolismo , Aderência Bacteriana , Escherichia coli O157 , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Hexosiltransferases/genética , Mutação , Fatores de Transcrição/genética , Regulação para Cima
19.
Exp Brain Res ; 237(1): 29-36, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30298296

RESUMO

L-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective therapy for motor symptoms of Parkinson's disease (PD); however, with repeated administration, as many as 94% of PD patients develop complications such as L-DOPA-induced dyskinesia. We previously demonstrated that EMD-281,014, a highly selective serotonin 2A (5-HT2A) receptor antagonist, reduces the severity of dyskinesia in the parkinsonian marmoset, without interfering with L-DOPA anti-parkinsonian benefit. Here, we assessed the effects of EMD-281,014 on L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat. We first determined the pharmacokinetic profile of EMD-281,014, to administer doses leading to clinically relevant plasma levels in the behavioural experiments. Dyskinetic 6-OHDA-lesioned rats were then administered EMD-281,014 (0.01, 0.03 and 0.1 mg/kg) or vehicle in combination with L-DOPA and AIMs severity was evaluated. We also assessed the effect of EMD-281,014 on L-DOPA anti-parkinsonian action with the cylinder test. We found that the addition of EMD-281,014 (0.01, 0.03 and 0.1 mg/kg) to L-DOPA did not reduce AIMs severity (P > 0.05), when compared to vehicle. EMD-281,014 did not compromise L-DOPA anti-parkinsonian action. Our results suggest that the highly selective 5-HT2A receptor antagonist EMD-281,014 is well-tolerated by parkinsonian rats, but does not attenuate L-DOPA-induced AIMs. Our results highlight differences between rodent and primate models of PD when it comes to determining the anti-dyskinetic action of 5-HT2A receptor antagonists.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Indóis/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Piperazinas/uso terapêutico , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Adrenérgicos/toxicidade , Animais , Antiparkinsonianos/efeitos adversos , Área Sob a Curva , Monoaminas Biogênicas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Feminino , Lateralidade Funcional/efeitos dos fármacos , Indóis/sangue , Levodopa/efeitos adversos , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Piperazinas/sangue , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT2 de Serotonina/sangue
20.
Clin Exp Pharmacol Physiol ; 46(8): 723-733, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31046168

RESUMO

The monosodium iodoacetate (MIA)-induced joint degeneration in rats is the most used animal model to screen analgesic drugs to alleviate osteoarthritis (OA) pain. This study aimed to evaluate the analgesic efficacy of pregabalin (PGB) in an MIA-induced OA model in rodents by using functional and neuroproteomic pain assessment methods. Treatment group included PGB in curative intent over 9 days compared to gold standard therapy (positive controls) and placebo (negative control). Functional assessments of pain (quantitative sensory testing and operant test) were performed concomitantly with spinal neuropeptides quantification. At day 21 post-OA induction, PGB in MIA rats reduced tactile allodynia (P = 0.028) and improved the place escape/avoidance behaviour (P = 0.04) compared to values recorded at last time-point before initiating analgesic therapy. All spinal neuropeptide concentrations, such as substance P, calcitonin gene-related peptide, bradykinin and somatostatin, came back to normal (non-affected) rat values, compared to their increase observed in MIA rats receiving the placebo (P < 0.0001). Initiated 13 days after chemical OA induction, repeated medication with PGB provided analgesia according to quantitative sensory testing, operant test and targeted neuropeptides pain assessment methods. This report highlights the interest of using reliable and sensitive methods like targeted neuropeptide quantification to detect the analgesic effects of a test article with concomitant functional assessments of pain when studying OA pain components.


Assuntos
Analgésicos/farmacologia , Neuropeptídeos/metabolismo , Osteoartrite/complicações , Osteoartrite/tratamento farmacológico , Dor/complicações , Pregabalina/farmacologia , Animais , Feminino , Osteoartrite/metabolismo , Medição da Dor , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA