Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 465(7297): 458-61, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20505724

RESUMO

For an isolated quantum particle, such as an electron, the orbital (L) and spin (S) magnetic moments can change provided that the total angular momentum of the particle is conserved. In condensed matter, an efficient transfer between L and S can occur owing to the spin-orbit interaction, which originates in the relativistic motion of electrons. Disentangling the absolute contributions of the orbital and spin angular momenta is challenging, however, as any transfer between the two occurs on femtosecond timescales. Here we investigate such phenomena by using ultrashort optical laser pulses to change the magnetization of a ferromagnetic film and then probe its dynamics with circularly polarized femtosecond X-ray pulses. Our measurements enable us to disentangle the spin and orbital components of the magnetic moment, revealing different dynamics for L and S. We highlight the important role played by the spin-orbit interaction in the ultrafast laser-induced demagnetization of ferromagnetic films, and show also that the magneto-crystalline anisotropy energy is an important quantity to consider in such processes. Our study provides insights into the dynamics in magnetic systems as well as perspectives for the ultrafast control of information in magnetic recording media.

2.
J Chem Phys ; 142(19): 194702, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26001468

RESUMO

Thin films of the spin-crossover (SCO) molecule Fe{[Me2Pyrz]3BH}2 (Fe-pyrz) were sublimed on Si/SiO2 and quartz substrates, and their properties investigated by X-ray absorption and photoemission spectroscopies, optical absorption, atomic force microscopy, and superconducting quantum interference device. Contrary to the previously studied Fe(phen)2(NCS)2, the films are not smooth but granular. The thin films qualitatively retain the typical SCO properties of the powder sample (SCO, thermal hysteresis, soft X-ray induced excited spin-state trapping, and light induced excited spin-state trapping) but present intriguing variations even in micrometer-thick films: the transition temperature decreases when the thickness is decreased, and the hysteresis is affected. We explain this behavior in the light of recent studies focusing on the role of surface energy in the thermodynamics of the spin transition in nano-structures. In the high-spin state at room temperature, the films have a large optical gap (∼5 eV), decreasing at thickness below 50 nm, possibly due to film morphology.

3.
J Chem Phys ; 139(7): 074708, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23968108

RESUMO

The dynamics of the soft x-ray induced excited spin state trapping (SOXIESST) effect of Fe(phen)2(NCS)2 (Fe-phen) powder have been investigated by x-ray absorption spectroscopy (XAS) using the total electron yield method, in a wide temperature range. The low-spin (LS) state is excited into the metastable high-spin (HS) state at a rate that depends on the intensity of the x-ray illumination it receives, and both the temperature and the intensity of the x-ray illumination will affect the maximum HS proportion that is reached. We find that the SOXIESST HS spin state transforms back to the LS state at a rate that is similar to that found for the light induced excited spin state trapping (LIESST) effect. We show that it is possible to use the SOXIESST effect in combination with the LIESST effect to investigate the influence of cooperative behavior on the dynamics of both effects. To investigate the impact of molecular cooperativity, we compare our results on Fe-phen with those obtained for Fe{[Me2Pyrz]3BH}2 (Fe-pyrz) powder, which exhibits a similar thermal transition temperature but with a hysteresis. We find that, while the time constant of the dynamic is identical for both molecules, the SOXIESST effect is less efficient at exciting the HS state in Fe-pyrz than in Fe-phen.

4.
J Microsc ; 244(2): 136-43, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21801177

RESUMO

We present a simple and versatile scheme for characterising amplitude and phase modulation by an active element, such as a deformable mirror, in the pupil plane of a high NA microscope. By placing a mirror in the vicinity of the focal plane of the objective and recording images of the reflected focal spot on a camera, we show that reliable measurements of the influence function of the mirror actuators in the pupil plane of the objective can be obtained using an iterative electric field retrieval algorithm. Compared to direct wavefront sensors, the proposed method allows characterisation for a variety of objectives with different NA and pupil sizes without modification of the setup, requires minimal space inside the microscope, and can be used with pulsed sources such as used for multiphoton microscopy. In order to validate our method, we compare our data to the results obtained with a Shack-Hartmann wavefront sensor, and show that comparable precision is achieved.

5.
Phys Rev Lett ; 105(7): 077201, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868071

RESUMO

We have studied the repercussion of the molecular adsorption mechanism on the electronic properties of the interface between model nonmagnetic or magnetic metallic surfaces and metallo-organic phthalocyanines molecules (Pcs). Our intertwined x-ray absorption spectroscopy experiments and computational studies reveal that manganese Pc (MnPc) is physisorbed onto a Cu(001) surface and retains the electronic properties of a free molecule. On the other hand, MnPc is chemisorbed onto Co(001), leading to a dominant direct exchange interaction between the Mn molecular site and the Co substrate. By promoting an interfacial spin-polarized conduction state on the molecule, these interactions reveal an important lever to tailor the spintronic properties of hybrid organic-metallic interfaces.

6.
Nanotechnology ; 19(13): 135702, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19636106

RESUMO

Fe(50)Pt(50) nanoparticles were deposited on thermally oxidized Si substrates by electron-beam co-evaporation of Fe and Pt, at substrate temperatures T(s) between 300 and 700 degrees C. The co-deposition led to the formation of drop-like, coalesced nanoparticles, chain-like structures or continuous films, the morphology being dependent on T(s) or the nominal thickness of the layer, f. The nanoparticles have a mean diameter D(p) between 3 and 45 nm, which increases with increasing f. The degree of crystallization in the ordered face centred tetragonal (fct) phase of the samples depends strongly on the growth conditions and increases with increasing T(s) and f. Nanoparticles with a higher proportion of the fct phase exhibit higher coercivity, with a maximum value of approximately 10.3 kOe (for the specimens prepared at 600 degrees C with f = 8.5 nm). Conversely, samples with a high proportion of the cubic phase are either superparamagnetic or ferromagnetically soft. The thermal annealing performed on selected samples resulted in structural transformation as well as magnetic hardening that depended on f and D(p).

7.
Opt Express ; 15(7): 4054-65, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19532649

RESUMO

We compare second harmonic generation (SHG) to histological and immunohistochemical techniques for the visualization and scoring of collagen in biological tissues. We show that SHG microscopy is highly specific for fibrillar collagens and that combined SHG and two-photon excited fluorescence (2PEF) imaging can provide simultaneous three-dimensional visualization of collagen synthesis and assembly sites in transgenic animal models expressing GFP constructs. Finally, we propose several scores for characterizing collagen accumulation based on SHG images and appropriate for different types of collagen distributions. We illustrate the sensitivity of these scores in a murine model of renal fibrosis using a morphological segmentation of the tissue based on endogenous 2PEF signals.

8.
Dalton Trans ; 45(42): 16694-16699, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27711704

RESUMO

Molecular spintronics is an effervescent field of research, which aims at combining spin physics and molecular nano-objects. In this article, we show that phthalocyanine molecules integrated in magnetic tunnel junctions (MTJs) can lead to magnetoresistance effects of different origins. We have investigated cobalt and manganese phthalocyanine molecule based magnetic tunnel junctions. CoPc MTJs exhibit both tunneling magnetoresistance (TMR) and tunneling anisotropic magnetoresistance (TAMR) effects of similar magnitude. However, for MnPc MTJs, a giant TAMR dominates with ratios up to ten thousands of percent. Strong features visible in the conductance suggest that spin-flip inelastic electron tunneling processes occur through the Mn atomic chain formed by the MnPc stacks. These results show that metallo-organic molecules could be used as a template to connect magnetic atomic chains or even a single magnetic atom in a solid-state device.

9.
J Neurosci Methods ; 111(1): 29-37, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11574117

RESUMO

Light scattering by tissue limits the imaging depth of two-photon microscopy and its use for functional brain imaging in vivo. We investigate the influence of scattering on both fluorescence excitation and collection, and identify tissue and instrument parameters that limit the imaging depth in the brain. (i) In brain slices, we measured that the scattering length at lambda=800 nm is a factor 2 higher in juvenile cortical tissue (P14-P18) than in adult tissue (P90). (ii) In a detection geometry typical for in vivo imaging, we show that the collected fraction of fluorescence drops at large depths, and that it is proportional to the square of the effective angular acceptance of the detection optics. Matching the angular acceptance of the microscope to that of the objective lens can result in a gain of approximately 3 in collection efficiency at large depths (>500 microm). A low-magnification (20x), high-numerical aperture objective (0.95) further increases fluorescence collection by a factor of approximately 10 compared with a standard 60x-63x objective without compromising the resolution. This improvement should allow fluorescence measurements related to neuronal or vascular brain activity at >100 microm deeper than with standard objectives.


Assuntos
Envelhecimento/fisiologia , Encéfalo/citologia , Lentes/normas , Neurônios/citologia , Animais , Artérias Cerebrais/citologia , Feminino , Fluorescência , Masculino , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Método de Monte Carlo , Ratos , Ratos Wistar
10.
Nat Commun ; 5: 3466, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24614016

RESUMO

Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.


Assuntos
Ligas/química , Fenômenos Magnéticos , Imãs/química , Termodinâmica , Anisotropia , Dicroísmo Circular/métodos , Cobalto/química , Cristalização , Gadolínio/química , Térbio/química , Raios X
11.
Nat Commun ; 5: 4547, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25088937

RESUMO

Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.

12.
Sci Rep ; 3: 1272, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23412079

RESUMO

Organic semiconductors constitute promising candidates toward large-scale electronic circuits that are entirely spintronics-driven. Toward this goal, tunneling magnetoresistance values above 300% at low temperature suggested the presence of highly spin-polarized device interfaces. However, such spinterfaces have not been observed directly, let alone at room temperature. Thanks to experiments and theory on the model spinterface between phthalocyanine molecules and a Co single crystal surface, we clearly evidence a highly efficient spinterface. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecule's nitrogen π orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanisms in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature.

13.
J Phys Condens Matter ; 22(12): 125504, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21389491

RESUMO

The temperature dependence of the pre-edge features in x-ray absorption spectroscopy is reviewed. Then, the temperature dependence of the pre-edge structure at the K-edge of titanium in rutile TiO(2) is measured at low and room temperature. The first two peaks grow with temperature. The fact that these two peaks also correspond to electric quadrupole transitions is explained by a recently proposed theory.


Assuntos
Titânio/química , Espectroscopia por Absorção de Raios X/métodos , Teste de Materiais , Metais/química , Modelos Estatísticos , Física/métodos , Temperatura , Vibração
14.
Phys Rev Lett ; 76(22): 4250-4253, 1996 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-10061239
15.
Phys Rev Lett ; 59(21): 2471-2474, 1987 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-10035559
18.
Phys Rev B Condens Matter ; 53(3): 1083-1086, 1996 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9983561
20.
Phys Rev B Condens Matter ; 51(24): 17506-17511, 1995 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9978774
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA