Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Comput Dent ; 0(0): 0, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426831

RESUMO

AIM: The aim of this in vitro study was to investigate the influence of scan paths on the accuracy (trueness and precision) of intra-oral scanning of an implant impression on an edentulous patient. MATERIAL AND METHODS: An epoxy resin maxillary model was made with 6 bone level implants (NobelParallel Conical Connection RP, NobelBiocare®). The implants were placed at the spot of the first incisor, the canine and the first molar. The trans gingival component (Multi-unit, NobelBiocare®) was screwed onto the implants. The scanbodies (IO 2C-A, Elos Accurate®) were then screwed onto the multi-units. The model was run through a coordinate measurement machine to obtain a control cast. Then, five different scanning paths, respectively the zigzag technique (ZZT), the zigzag technique with palatal (ZZTP), the wrap technique (WT), the wrap technique with palatal (WTP), and the big zigzag technique (BZZT), were applied by a single operator. Finally, each scan was compared to the control model. Results were assessed by one-way ANOVA and linear mixed effects models at P<0.05. RESULTS: The study showed that scan paths ZZT and ZZTP had significantly lower absolute positioning errors and residual mean square errors than the others (P<0.0001). For distances between consecutive implant axes and for absolute vertical errors, their superiority was borderline (P<0.10). Overall, techniques ZZT and ZZTP were equally performant and proved to be the most accurate. CONCLUSIONS: This in vitro experimental study demonstrates that the scan path can have an influence on the accuracy of the optical impression for full arch rehabilitation on implants.

2.
J Am Soc Mass Spectrom ; 33(2): 273-283, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35020377

RESUMO

Experimental ion mobility-mass spectrometry (IM-MS) results are often correlated to three-dimensional structures based on theoretical chemistry calculations. The bottleneck of this approach is the need for accurate values, both experimentally and theoretically predicted. Here, we continue the development of the trend-based analyses to extract structural information from experimental IM-MS data sets. The experimental collision cross-sections (CCSs) of synthetic systems such as homopolymers and small ionic clusters are investigated in terms of CCS trends as a function of the number of repetitive units (e.g., degree of polymerization (DP) for homopolymers) and for each detected charge state. Then, we computed the projected areas of expanding but perfectly defined geometric objects using an in-house software called MoShade. The shapes were modeled using computer-aided design software where we considered only geometric factors: no atoms, mass, chemical potentials, or interactions were taken into consideration to make the method orthogonal to classical methods for 3D shape assessments using time-consuming computational chemistry. Our modeled shape evolutions favorably compared to experimentally obtained CCS trends, meaning that the apparent volume or envelope of homogeneously distributed mass effectively modeled the ion-drift gas interactions as sampled by IM-MS. The CCSs of convex shapes could be directly related to their surface area. More importantly, this relationship seems to hold even for moderately concave shapes, such as those obtained by geometry-optimized structures of ions from conventional computational chemistry methods. Theoretical sets of expanding beads-on-a-string shapes allowed extracting accurate bead and string dimensions for two homopolymers, without modeling any chemical interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA