Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Blood Marrow Transplant ; 26(12): 2335-2345, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32961375

RESUMO

Hematopoietic cell transplantation (HCT) is an effective treatment for many hematologic malignancies, and its utilization continues to rise. However, due to the difficult logistics and high cost of HCT, there are significant barriers to accessing the procedure; these barriers are likely greater for older patients. Although numerous factors may influence HCT access, no formal analysis has detailed the cumulative barriers that have been studied thus far. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to better categorize the barriers to access and referral to HCT, with a focus on the subgroup of older patients. We searched for articles published in English from PubMed, Embase, Cumulative Index for Nursing and Allied Health, and Cochrane Central Register of Controlled Trials between the database inception and January 31, 2020. We selected articles that met the following inclusion criteria: (1) study design: qualitative, cross-sectional, observational cohort, or mixed-method study designs; (2) outcomes: barriers related to patient and physician access to HCT; and (3) population: adults aged ≥18 years with hematologic malignancies within the United States. Abstracts without full text were excluded. QUALSYST methodology was used to determine article quality. Data on the barriers to access and referral for HCT were extracted, along with other study characteristics. We summarized the findings using descriptive statistics. We included 26 of 3859 studies screened for inclusion criteria. Twenty studies were retrospective cohorts and 4 were cross-sectional. There was 1 prospective cohort study and 1 mixed-method study. Only 1 study was rated as high quality, and 16 were rated as fair. Seventeen studies analyzed age as a potential barrier to HCT referral and access, with 16 finding older age to be a barrier. Other consistent barriers to HCT referral and access included nonwhite race (n = 16/20 studies), insurance status (n = 13/14 studies), comorbidities (n = 10/11 studies), and lower socioeconomic status (n = 7/8 studies). High-quality studies are lacking related to HCT barriers. Older age and nonwhite race were consistently linked to reduced access to HCT. To produce a more just health care system, strategies to overcome these barriers for vulnerable populations should be prioritized. Examples include patient and physician education, as well as geriatric assessment guided care models that can be readily incorporated into clinical practice.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Adolescente , Adulto , Idoso , Estudos Transversais , Neoplasias Hematológicas/terapia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Estados Unidos
2.
Nature ; 511(7507): 90-3, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24870236

RESUMO

Drug resistance is a major hurdle in oncology. Responses of acute myeloid leukaemia (AML) patients to cytarabine (Ara-C)-based therapies are often short lived with a median overall survival of months. Therapies are under development to improve outcomes and include targeting the eukaryotic translation initiation factor (eIF4E) with its inhibitor ribavirin. In a Phase II clinical trial in poor prognosis AML, ribavirin monotherapy yielded promising responses including remissions; however, all patients relapsed. Here we identify a novel form of drug resistance to ribavirin and Ara-C. We observe that the sonic hedgehog transcription factor glioma-associated protein 1 (GLI1) and the UDP glucuronosyltransferase (UGT1A) family of enzymes are elevated in resistant cells. UGT1As add glucuronic acid to many drugs, modifying their activity in diverse tissues. GLI1 alone is sufficient to drive UGT1A-dependent glucuronidation of ribavirin and Ara-C, and thus drug resistance. Resistance is overcome by genetic or pharmacological inhibition of GLI1, revealing a potential strategy to overcome drug resistance in some patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ácido Glucurônico/metabolismo , Glucuronosiltransferase/metabolismo , Proteínas Hedgehog/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Citarabina/metabolismo , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Deleção de Genes , Glucuronosiltransferase/biossíntese , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Ribavirina/metabolismo , Ribavirina/farmacologia , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco
3.
Blood ; 128(13): 1671-8, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27421961

RESUMO

Most cancers evolve over time as patients initially responsive to therapy acquire resistance to the same drugs at relapse. Cancer stem cells have been postulated to represent a therapy-refractory reservoir for relapse, but formal proof of this model is lacking. We prospectively characterized leukemia stem cell populations (LSCs) from a well-defined cohort of patients with acute myelogenous leukemia (AML) at diagnosis and relapse to assess the effect of the disease course on these critical populations. Leukemic samples were collected from patients with newly diagnosed AML before therapy and after relapse, and LSC frequency was assessed by limiting dilution analyses. LSC populations were identified using fluorescent-labeled cell sorting and transplantation into immunodeficient NOD/SCID/interleukin 2 receptor γ chain null mice. The surface antigen expression profiles of pretherapy and postrelapse LSCs were determined for published LSC markers. We demonstrate a 9- to 90-fold increase in LSC frequency between diagnosis and relapse. LSC activity at relapse was identified in populations of leukemic blasts that did not demonstrate this activity before treatment and relapse. In addition, we describe genetic instability and exceptional phenotypic changes that accompany the evolution of these new LSC populations. This study is the first to characterize the evolution of LSCs in vivo after chemotherapy, identifying a dramatic change in the physiology of primitive AML cells when the disease progresses. Taken together, these findings provide a new frame of reference by which to evaluate candidate AML therapies in which both disease control and the induction of more advanced forms of disease should be considered.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/imunologia , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transplante de Neoplasias , Células-Tronco Neoplásicas/imunologia , Estudos Prospectivos , Recidiva , Adulto Jovem
4.
Blood ; 127(5): 616-25, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637787

RESUMO

In vitro evidence suggests that the bone marrow microenvironment (BMME) is altered in myelodysplastic syndromes (MDSs). Here, we study the BMME in MDS in vivo using a transgenic murine model of MDS with hematopoietic expression of the translocation product NUP98-HOXD13 (NHD13). This model exhibits a prolonged period of cytopenias prior to transformation to leukemia and is therefore ideal to interrogate the role of the BMME in MDS. In this model, hematopoietic stem and progenitor cells (HSPCs) were decreased in NHD13 mice by flow cytometric analysis. The reduction in the total phenotypic HSPC pool in NHD13 mice was confirmed functionally with transplantation assays. Marrow microenvironmental cellular components of the NHD13 BMME were found to be abnormal, including increases in endothelial cells and in dysfunctional mesenchymal and osteoblastic populations, whereas megakaryocytes were decreased. Both CC chemokine ligand 3 and vascular endothelial growth factor, previously shown to be increased in human MDS, were increased in NHD13 mice. To assess whether the BMME contributes to disease progression in NHD13 mice, we performed transplantation of NHD13 marrow into NHD13 mice or their wild-type (WT) littermates. WT recipients as compared with NHD13 recipients of NHD13 marrow had a lower rate of the combined outcome of progression to leukemia and death. Moreover, hematopoietic function was superior in a WT BMME as compared with an NHD13 BMME. Our data therefore demonstrate a contributory role of the BMME to disease progression in MDS and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function and overall survival.


Assuntos
Medula Óssea/patologia , Microambiente Celular , Células-Tronco Hematopoéticas/patologia , Síndromes Mielodisplásicas/patologia , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Síndromes Mielodisplásicas/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , Transgenes
5.
Haematologica ; 102(6): 1054-1065, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28280079

RESUMO

Aldehyde dehydrogenase 1A1 (ALDH1A1) activity is high in hematopoietic stem cells and functions in part to protect stem cells from reactive aldehydes and other toxic compounds. In contrast, we found that approximately 25% of all acute myeloid leukemias expressed low or undetectable levels of ALDH1A1 and that this ALDH1A1- subset of leukemias correlates with good prognosis cytogenetics. ALDH1A1- cell lines as well as primary leukemia cells were found to be sensitive to treatment with compounds that directly and indirectly generate toxic ALDH substrates including 4-hydroxynonenal and the clinically relevant compounds arsenic trioxide and 4-hydroperoxycyclophosphamide. In contrast, normal hematopoietic stem cells were relatively resistant to these compounds. Using a murine xenotransplant model to emulate a clinical treatment strategy, established ALDH1A1- leukemias were also sensitive to in vivo treatment with cyclophosphamide combined with arsenic trioxide. These results demonstrate that targeting ALDH1A1- leukemic cells with toxic ALDH1A1 substrates such as arsenic and cyclophosphamide may be a novel targeted therapeutic strategy for this subset of acute myeloid leukemias.


Assuntos
Aldeído Desidrogenase/deficiência , Quimioterapia Combinada/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Família Aldeído Desidrogenase 1 , Animais , Trióxido de Arsênio , Arsenicais/uso terapêutico , Células Cultivadas , Ciclofosfamida/uso terapêutico , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/enzimologia , Camundongos , Terapia de Alvo Molecular , Óxidos/uso terapêutico , Retinal Desidrogenase
7.
J Surg Orthop Adv ; 24(4): 213-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26731383

RESUMO

Evidence-based guidelines have recently been published for the nonarthroplasty treatment of osteoarthritis of the hip and knee and are becoming an expected part of comprehensive patient care. To understand how current treatment practices correlate with these guidelines, a survey was administered to 50 consecutive hip replacement and 50 consecutive knee replacement patients immediately before arthroplasty for osteoarthritis in one group practice. This article is a compilation of patients' usage of the modalities suggested in two such exemplary guidelines and demonstrates that patient and surgeon preferences, as well as factors such as preoperative Oxford score, body mass index, age, and joint involved, affect usage of one or more of the commonly employed preoperative modalities. This information provides orthopaedic surgeons and administrators with a compilation of responses that reflects surgeon and patient preferences for treatment before surgery.


Assuntos
Competência Clínica , Procedimentos Ortopédicos/normas , Ortopedia , Osteoartrite do Quadril/terapia , Osteoartrite do Joelho/terapia , Guias de Prática Clínica como Assunto , Cirurgiões , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Recursos Humanos
8.
J Biol Chem ; 288(47): 33542-33558, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24089526

RESUMO

The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dioxolanos/farmacologia , Glutationa/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antígenos CD34 , Feminino , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutamato-Cisteína Ligase/metabolismo , Glutationa/antagonistas & inibidores , Glutationa Peroxidase/antagonistas & inibidores , Glutationa Peroxidase/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Oxirredução/efeitos dos fármacos , Células Tumorais Cultivadas , Glutationa Peroxidase GPX1
9.
Blood ; 119(2): 540-50, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21957195

RESUMO

Pancytopenia is a major cause of morbidity in acute myeloid leukemia (AML), yet its cause is unclear. Normal osteoblastic cells have been shown to support hematopoiesis. To define the effects of leukemia on osteoblastic cells, we used an immunocompetent murine model of AML. Leukemic mice had inhibition of osteoblastic cells, with decreased serum levels of the bone formation marker osteocalcin. Osteoprogenitor cells and endosteal-lining osteopontin(+) cells were reduced, and osteocalcin mRNA in CD45(-) marrow cells was diminished. This resulted in severe loss of mineralized bone. Osteoclasts were only transiently increased without significant increases in bone resorption, and their inhibition only partially rescued leukemia-induced bone loss. In vitro data suggested that a leukemia-derived secreted factor inhibited osteoblastic cells. Because the chemokine CCL-3 was recently reported to inhibit osteoblastic function in myeloma, we tested its expression in our model and in AML patients. Consistent with its potential novel role in leukemic-dependent bone loss, CCL-3 mRNA was significantly increased in malignant marrow cells from leukemic mice and from samples from AML patients. Based on these results, we propose that therapeutic mitigation of leukemia-induced uncoupling of osteoblastic and osteoclastic cells may represent a novel approach to promote normal hematopoiesis in patients with myeloid neoplasms.


Assuntos
Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Hematopoese , Leucemia Mieloide/patologia , Osteoblastos/patologia , Osteoclastos/patologia , Animais , Western Blotting , Conservadores da Densidade Óssea/farmacologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Quimiocina CCL3/genética , Difosfonatos/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imidazóis/farmacologia , Imunocompetência , Técnicas Imunoenzimáticas , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/metabolismo , Baço/patologia , Ácido Zoledrônico
10.
Stem Cells ; 31(2): 372-83, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23169593

RESUMO

Hematopoietic stem and progenitor cells (HSPCs), which continuously maintain all mature blood cells, are regulated within the marrow microenvironment. We previously reported that pharmacologic treatment of naïve mice with prostaglandin E2 (PGE2) expands HSPCs. However, the cellular mechanisms mediating this expansion remain unknown. Here, we demonstrate that PGE2 treatment in naïve mice inhibits apoptosis of HSPCs without changing their proliferation rate. In a murine model of sublethal total body irradiation (TBI), in which HSPCs are rapidly lost, treatment with a long-acting PGE2 analog (dmPGE2) reversed the apoptotic program initiated by TBI. dmPGE2 treatment in vivo decreased the loss of functional HSPCs following radiation injury, as demonstrated both phenotypically and by their increased reconstitution capacity. The antiapoptotic effect of dmPGE2 on HSPCs did not impair their ability to differentiate in vivo, resulting instead in improved hematopoietic recovery after TBI. dmPGE2 also increased microenvironmental cyclooxygenase-2 expression and expanded the α-smooth muscle actin-expressing subset of marrow macrophages, thus enhancing the bone marrow microenvironmental response to TBI. Therefore, in vivo treatment with PGE2 analogs may be particularly beneficial to HSPCs in the setting of injury by targeting them both directly and also through their niche. The current data provide rationale for in vivo manipulation of the HSPC pool as a strategy to improve recovery after myelosuppression.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Dinoprostona/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Actinas/genética , Actinas/imunologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Células da Medula Óssea/patologia , Células da Medula Óssea/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/efeitos da radiação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Dinoprostona/análogos & derivados , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos da radiação , Macrófagos/patologia , Macrófagos/efeitos da radiação , Masculino , Camundongos , Camundongos Transgênicos , Lesões Experimentais por Radiação/imunologia , Lesões Experimentais por Radiação/patologia , Irradiação Corporal Total
11.
Nat Med ; 13(1): 78-83, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17159988

RESUMO

Interstitial loss of all or part of the long arm of chromosome 5, or del(5q), is a frequent clonal chromosomal abnormality in human myelodysplastic syndrome (MDS, a preleukemic disorder) and acute myeloid leukemia (AML), and is thought to contribute to the pathogenesis of these diseases by deleting one or more tumor-suppressor genes. Although a major commonly deleted region (CDR) has been delineated on chromosome band 5q31.1 (refs. 3-7), attempts to identify tumor suppressors within this band have been unsuccessful. We focused our analysis of gene expression on RNA from primitive leukemia-initiating cells, which harbor 5q deletions, and analyzed 12 genes within the CDR that are expressed by normal hematopoietic stem cells. Here we show that the gene encoding alpha-catenin (CTNNA1) is expressed at a much lower level in leukemia-initiating stem cells from individuals with AML or MDS with a 5q deletion than in individuals with MDS or AML lacking a 5q deletion or in normal hematopoietic stem cells. Analysis of HL-60 cells, a myeloid leukemia line with deletion of the 5q31 region, showed that the CTNNA1 promoter of the retained allele is suppressed by both methylation and histone deacetylation. Restoration of CTNNA1 expression in HL-60 cells resulted in reduced proliferation and apoptotic cell death. Thus, loss of expression of the alpha-catenin tumor suppressor in hematopoietic stem cells may provide a growth advantage that contributes to human MDS or AML with del(5q).


Assuntos
Transformação Celular Neoplásica , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Células Progenitoras Mieloides/patologia , alfa Catenina/genética , Doença Aguda , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HL-60 , Humanos , Ácidos Hidroxâmicos/farmacologia , Hibridização in Situ Fluorescente/métodos , Células K562 , Leucemia Mieloide/sangue , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , Mutação , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Células Progenitoras Mieloides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células U937 , alfa Catenina/metabolismo
12.
Nature ; 453(7192): 228-32, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18418377

RESUMO

Haematopoiesis is maintained by a hierarchical system where haematopoietic stem cells (HSCs) give rise to multipotent progenitors, which in turn differentiate into all types of mature blood cells. HSCs maintain themselves for the lifetime of the organism because of their ability to self-renew. However, multipotent progenitors lack the ability to self-renew, therefore their mitotic capacity and expansion potential are limited and they are destined to eventually stop proliferating after a finite number of cell divisions. The molecular mechanisms that limit the proliferation capacity of multipotent progenitors and other more mature progenitors are not fully understood. Here we show that bone marrow cells from mice deficient in three genes genetically downstream of Bmi1--p16Ink4a, p19Arf and Trp53 (triple mutant mice; p16Ink4a and p19Arf are alternative reading frames of the same gene (also called Cdkn2a) that encode different proteins)--have an approximately 10-fold increase in cells able to reconstitute the blood long term. This increase is associated with the acquisition of long-term reconstitution capacity by cells of the phenotype c-kit+Sca-1+Flt3+CD150-CD48-Lin-, which defines multipotent progenitors in wild-type mice. The pattern of triple mutant multipotent progenitor response to growth factors resembles that of wild-type multipotent progenitors but not wild-type HSCs. These results demonstrate that p16Ink4a/p19Arf and Trp53 have a central role in limiting the expansion potential of multipotent progenitors. These pathways are commonly repressed in cancer, suggesting a mechanism by which early progenitor cells could gain the ability to self-renew and become malignant with further oncogenic mutations.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Genes p16 , Genes p53/genética , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Proteína Supressora de Tumor p53/deficiência , Animais , Contagem de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/imunologia , Células-Tronco Multipotentes/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798540

RESUMO

Signals from the microenvironment are known to be critical for development, sustaining adult stem cells, and for oncogenic progression. While candidate niche-driven signals that can promote cancer progression have been identified1-6, concerted efforts to comprehensively map microenvironmental ligands for cancer stem cell specific surface receptors have been lacking. Here, we use temporal single cell RNA-sequencing to identify molecular cues from the bone marrow stromal niche that engage leukemia stem cells (LSC) during oncogenic progression. We integrate these data with our RNA-seq analysis of human LSCs from distinct aggressive myeloid cancer subtypes and our CRISPR based in vivo LSC dependency map7 to develop a temporal receptor-ligand interactome essential for disease progression. These analyses identify the taurine transporter (TauT)-taurine axis as a critical dependency of myeloid malignancies. We show that taurine production is restricted to the osteolineage population during cancer initiation and expansion. Inhibiting taurine synthesis in osteolineage cells impairs LSC growth and survival. Our experiments with the TauT genetic loss of function murine model indicate that its loss significantly impairs the progression of aggressive myeloid leukemias in vivo by downregulating glycolysis. Further, TauT inhibition using a small molecule strongly impairs the growth and survival of patient derived myeloid leukemia cells. Finally, we show that TauT inhibition can synergize with the clinically approved oxidative phosphorylation inhibitor venetoclax8, 9 to block the growth of primary human leukemia cells. Given that aggressive myeloid leukemias continue to be refractory to current therapies and have poor prognosis, our work indicates targeting the taurine transporter may be of therapeutic significance. Collectively, our data establishes a temporal landscape of stromal signals during cancer progression and identifies taurine-taurine transporter signaling as an important new regulator of myeloid malignancies.

14.
Sci Rep ; 14(1): 12868, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834690

RESUMO

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda , Proteínas Ativadoras de ras GTPase , Humanos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação por Computador , Antineoplásicos/farmacologia , Domínios Proteicos , Animais , Proteômica/métodos
15.
Bioact Mater ; 21: 241-252, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36157246

RESUMO

We propose an ex vivo T cell expansion system that mimics natural antigen-presenting cells (APCs) for adoptive cell therapy (ACT). Microfiber scaffolds coated with dendritic cell (DC) membrane replicate physicochemical properties of dendritic cells specific for T cell activation such as rapid recognition by T cells, long duration of T cell tethering, and DC-specific co-stimulatory cues. The DC membrane-coated scaffold is first surface-immobilized with T cell stimulatory ligands, anti-CD3 (αCD3) and anti-CD28 (αCD28) antibodies, followed by adsorption of releasable interleukin-2 (IL-2). The scaffolds present both surface and soluble cues to T cells ex vivo in the same way that these cues are presented by natural APCs in vivo. We demonstrate that the DC-mimicking scaffold promotes greater polyclonal expansion of primary human T cells as compared to αCD3/αCD28-functionalized Dynabead. More importantly, major histocompatibility complex molecules derived from the DC membrane of the scaffold allow antigen-specific T cell expansion with target cell-specific killing ability. In addition, most of the expanded T cells (∼97%) can be harvested from the scaffold by density gradient centrifugation. Overall, the DC-mimicking scaffold offers a scalable, modular, and customizable platform for rapid expansion of highly functional T cells for ACT.

16.
Bone Res ; 11(1): 15, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918531

RESUMO

Prior research establishing that bone interacts in coordination with the bone marrow microenvironment (BMME) to regulate hematopoietic homeostasis was largely based on analyses of individual bone-associated cell populations. Recent advances in intravital imaging has suggested that the expansion of hematopoietic stem cells (HSCs) and acute myeloid leukemia cells is restricted to bone marrow microdomains during a distinct stage of bone remodeling. These findings indicate that dynamic bone remodeling likely imposes additional heterogeneity within the BMME to yield differential clonal responses. A holistic understanding of the role of bone remodeling in regulating the stem cell niche and how these interactions are altered in age-related hematological malignancies will be critical to the development of novel interventions. To advance this understanding, herein, we provide a synopsis of the cellular and molecular constituents that participate in bone turnover and their known connections to the hematopoietic compartment. Specifically, we elaborate on the coupling between bone remodeling and the BMME in homeostasis and age-related hematological malignancies and after treatment with bone-targeting approaches. We then discuss unresolved questions and ambiguities that remain in the field.

17.
Cell Death Dis ; 14(7): 428, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452070

RESUMO

The efficient clearance of dead and dying cells, efferocytosis, is critical to maintain tissue homeostasis. In the bone marrow microenvironment (BMME), this role is primarily fulfilled by professional bone marrow macrophages, but recent work has shown that mesenchymal stromal cells (MSCs) act as a non-professional phagocyte within the BMME. However, little is known about the mechanism and impact of efferocytosis on MSCs and on their function. To investigate, we performed flow cytometric analysis of neutrophil uptake by ST2 cells, a murine bone marrow-derived stromal cell line, and in murine primary bone marrow-derived stromal cells. Transcriptional analysis showed that MSCs possess the necessary receptors and internal processing machinery to conduct efferocytosis, with Axl and Tyro3 serving as the main receptors, while MerTK was not expressed. Moreover, the expression of these receptors was modulated by efferocytic behavior, regardless of apoptotic target. MSCs derived from human bone marrow also demonstrated efferocytic behavior, showing that MSC efferocytosis is conserved. In all MSCs, efferocytosis impaired osteoblastic differentiation. Transcriptional analysis and functional assays identified downregulation in MSC mitochondrial function upon efferocytosis. Experimentally, efferocytosis induced mitochondrial fission in MSCs. Pharmacologic inhibition of mitochondrial fission in MSCs not only decreased efferocytic activity but also rescued osteoblastic differentiation, demonstrating that efferocytosis-mediated mitochondrial remodeling plays a critical role in regulating MSC differentiation. This work describes a novel function of MSCs as non-professional phagocytes within the BMME and demonstrates that efferocytosis by MSCs plays a key role in directing mitochondrial remodeling and MSC differentiation. Efferocytosis by MSCs may therefore be a novel mechanism of dysfunction and senescence. Since our data in human MSCs show that MSC efferocytosis is conserved, the consequences of MSC efferocytosis may impact the behavior of these cells in the human skeleton, including bone marrow remodeling and bone loss in the setting of aging, cancer and other diseases.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Fagocitose , Mitocôndrias/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo
18.
J Geriatr Oncol ; 14(1): 101403, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372724

RESUMO

INTRODUCTION: Recent data have shown improved outcomes in selected older adults with acute myeloid leukemia (AML) following allogeneic hematopoietic stem cell transplantation (HSCT). Nonetheless, practice patterns for referring and performing HSCT vary. We aimed to evaluate referral, utilization, and reasons for not referring/proceeding to HSCT in older adults with AML. MATERIALS AND METHODS: This is a single center retrospective analysis of patients aged ≥60 years diagnosed with AML evaluating rates of HSCT referral and utilization. Fisher's exact test was used to compare rates of referral and utilization across age groups and years of diagnosis. RESULTS: Median age of the 97 patients was 70 years (range 61-95); 30% (29/97) were referred for HSCT and of these, 69% (20/29) received HSCT. Common documented reasons (can be multiple) for not referring were performance status (n = 21), advanced age (n = 16), patient refusal (n = 15), refractory disease (n = 14), and prohibitive comorbidity (n = 6). Among patients who were referred but did not receive HSCT (n = 9/29), documented reasons for not proceeding with HSCT were refractory disease (n = 5), advanced age (n = 2), and prohibitive comorbidity (n = 2). HSCT referral and utilization rates significantly decreased with age (p < 0.01) but were generally stable over time from 2014 to 2017 (p = 0.40 for referral and p = 0.56 for utilization). DISCUSSION: Despite improvements in supportive care and HSCT techniques, HSCT referral and utilization rates remained low among older adults with AML but stable over time.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Transplante Homólogo/métodos , Comorbidade
19.
Cells ; 12(11)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37296594

RESUMO

Mitochondrial dysfunction is observed in various conditions, from metabolic syndromes to mitochondrial diseases. Moreover, mitochondrial DNA (mtDNA) transfer is an emerging mechanism that enables the restoration of mitochondrial function in damaged cells. Hence, developing a technology that facilitates the transfer of mtDNA can be a promising strategy for the treatment of these conditions. Here, we utilized an ex vivo culture of mouse hematopoietic stem cells (HSCs) and succeeded in expanding the HSCs efficiently. Upon transplantation, sufficient donor HSC engraftment was attained in-host. To assess the mitochondrial transfer via donor HSCs, we used mitochondrial-nuclear exchange (MNX) mice with nuclei from C57BL/6J and mitochondria from the C3H/HeN strain. Cells from MNX mice have C57BL/6J immunophenotype and C3H/HeN mtDNA, which is known to confer a higher stress resistance to mitochondria. Ex vivo expanded MNX HSCs were transplanted into irradiated C57BL/6J mice and the analyses were performed at six weeks post transplantation. We observed high engraftment of the donor cells in the bone marrow. We also found that HSCs from the MNX mice could transfer mtDNA to the host cells. This work highlights the utility of ex vivo expanded HSC to achieve the mitochondrial transfer from donor to host in the transplant setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
20.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37066307

RESUMO

Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA