Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Glia ; 69(6): 1444-1463, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33502042

RESUMO

Neurodegenerative disorders, characterized by progressive neuronal loss, eventually lead to functional impairment in the adult mammalian central nervous system (CNS). Importantly, these deteriorations are irreversible, due to the very limited regenerative potential of these CNS neurons. Stimulating and redirecting neuroinflammation was recently put forward as an important approach to induce axonal regeneration, but it remains elusive how inflammatory processes and CNS repair are intertwined. To gain more insight into these interactions, we investigated how immunomodulation affects the regenerative outcome after optic nerve crush (ONC) in the spontaneously regenerating zebrafish. First, inducing intraocular inflammation using zymosan resulted in an acute inflammatory response, characterized by an increased infiltration and proliferation of innate blood-borne immune cells, reactivation of Müller glia, and altered retinal cytokine expression. Strikingly, inflammatory stimulation also accelerated axonal regrowth after optic nerve injury. Second, we demonstrated that acute depletion of both microglia and macrophages in the retina, using pharmacological treatments with both the CSF1R inhibitor PLX3397 and clodronate liposomes, compromised optic nerve regeneration. Moreover, we observed that csf1ra/b double mutant fish, lacking microglia in both retina and brain, displayed accelerated RGC axonal regrowth after ONC, which was accompanied with unusual Müller glia proliferative gliosis. Altogether, our results highlight the importance of altered glial cell interactions in the axonal regeneration process after ONC in adult zebrafish. Unraveling the relative contribution of the different cell types, as well as the signaling pathways involved, may pinpoint new targets to stimulate repair in the vertebrate CNS.


Assuntos
Regeneração Nervosa , Peixe-Zebra , Animais , Macrófagos , Neuroglia , Doenças Neuroinflamatórias , Retina
2.
Biogerontology ; 20(1): 109-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30382466

RESUMO

The development of effective treatments for age-related neurodegenerative diseases remains one of the biggest medical challenges today, underscoring the high need for suitable animal model systems to improve our understanding of aging and age-associated neuropathology. Zebrafish have become an indispensable complementary model organism in gerontology research, yet their growth-control properties significantly differ from those in mammals. Here, we took advantage of the clearly defined and highly conserved structure of the fish retina to study the relationship between the processes of growth and aging in the adult zebrafish central nervous system (CNS). Detailed morphological measurements reveal an early phase of extensive retinal growth, where both the addition of new cells and stretching of existent tissue drive the increase in retinal surface. Thereafter, and coinciding with a significant decline in retinal growth rate, a neurodegenerative phenotype becomes apparent,-characterized by a loss of synaptic integrity, an age-related decrease in cell density and the onset of cellular senescence. Altogether, these findings support the adult zebrafish retina as a valuable model for gerontology research and CNS disease modeling and will hopefully stimulate further research into the mechanisms of aging and age-related pathology.


Assuntos
Envelhecimento , Senescência Celular/fisiologia , Doenças Neurodegenerativas , Retina , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Retina/crescimento & desenvolvimento , Retina/patologia , Peixe-Zebra
3.
Mediators Inflamm ; 2019: 6135795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881223

RESUMO

As adult mammals lack the capacity to replace or repair damaged neurons, degeneration and trauma (and subsequent dysfunction) of the central nervous system (CNS) seriously constrains the patient's life quality. Recent work has shown that appropriate modulation of acute neuroinflammation upon CNS injury can trigger a regenerative response; yet, the underlying cellular and molecular mechanisms remain largely elusive. In contrast to mammals, zebrafish retain high regenerative capacities into adulthood and thus form a powerful model to study the contribution of neuroinflammation to successful regeneration. Here, we used pharmacological immunosuppression methods to study the role of microglia/macrophages during optic nerve regeneration in adult zebrafish. We first demonstrated that systemic immunosuppression with dexamethasone (dex) impedes regeneration after optic nerve injury. Secondly, and strikingly, local intravitreal application of dex or clodronate liposomes prior to injury was found to sensitize retinal microglia. Consequently, we observed an exaggerated inflammatory response to subsequent optic nerve damage, along with enhanced tectal reinnervation. In conclusion, we found a strong positive correlation between the acute inflammatory response in the retina and the regenerative capacity of the optic nerve in adult zebrafish subjected to nerve injury.


Assuntos
Microglia/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Retina/fisiologia , Animais , Sistema Nervoso Central/fisiologia , Terapia de Imunossupressão , Software , Peixe-Zebra
4.
Methods Mol Biol ; 2636: 163-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881300

RESUMO

Neurodegenerative diseases and central nervous system (CNS) injuries are frequently characterized by axonal damage, as well as dendritic pathology. In contrast to mammals, adult zebrafish show a robust regeneration capacity after CNS injury and form the ideal model organism to further unravel the underlying mechanisms for both axonal and dendritic regrowth upon CNS damage. Here, we first describe an optic nerve crush injury model in adult zebrafish, an injury paradigm that inflicts de- and regeneration of the axons of retinal ganglion cells (RGCs), but also triggers RGC dendrite disintegration and subsequent recovery in a stereotyped and timed process. Next, we outline protocols for quantifying axonal regeneration and synaptic recovery in the brain, using retro- and anterograde tracing experiments and an immunofluorescent staining for presynaptic compartments, respectively. Finally, methods to analyze RGC dendrite retraction and subsequent regrowth in the retina are delineated, using morphological measurements and immunofluorescent staining for dendritic and synaptic markers.


Assuntos
Nervo Óptico , Peixe-Zebra , Animais , Axônios , Retina , Plasticidade Neuronal , Mamíferos
5.
Methods Mol Biol ; 2636: 437-447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881315

RESUMO

Zebrafish can successfully regenerate axons after optic nerve crush (ONC). Here, we describe two different behavioral tests to map visual recovery: the dorsal light reflex (DLR) test and the optokinetic response (OKR) test. The DLR is based on the tendency of fish to orient their back to a light source, and it can be tested by rotating a flashlight around the dorsolateral axis of the animal or by measuring the angle between the left/right body axis and the horizon. The OKR, in contrast, consists of reflexive eye movements triggered by motion in the visual field of the subject and is measured by placing the fish in a drum on which rotating black-and-white stripes are projected.


Assuntos
Olho , Peixe-Zebra , Animais , Nervo Óptico , Axônios , Movimento (Física)
6.
Front Mol Neurosci ; 16: 1196504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396787

RESUMO

Unlike mammals, adult zebrafish are able to fully regenerate axons and functionally recover from neuronal damage in the mature central nervous system (CNS). Decades of research have tried to identify the mechanisms behind their spontaneous regenerative capacity, but the exact underlying pathways and molecular drivers remain to be fully elucidated. By studying optic nerve injury-induced axonal regrowth of adult zebrafish retinal ganglion cells (RGCs), we previously reported transient dendritic shrinkage and changes in the distribution and morphology of mitochondria in the different neuronal compartments throughout the regenerative process. These data suggest that dendrite remodeling and temporary changes in mitochondrial dynamics contribute to effective axonal and dendritic repair upon optic nerve injury. To further elucidate these interactions, we here present a novel adult zebrafish microfluidic model in which we can demonstrate compartment-specific alterations in resource allocation in real-time at single neuron level. First, we developed a pioneering method that enables to isolate and culture adult zebrafish retinal neurons in a microfluidic setup. Notably, with this protocol, we report on a long-term adult primary neuronal culture with a high number of surviving and spontaneously outgrowing mature neurons, which was thus far only very limitedly described in literature. By performing time-lapse live cell imaging and kymographic analyses in this setup, we can explore changes in dendritic remodeling and mitochondrial motility during spontaneous axonal regeneration. This innovative model system will enable to discover how redirecting intraneuronal energy resources supports successful regeneration in the adult zebrafish CNS, and might facilitate the discovery of new therapeutic targets to promote neuronal repair in humans.

7.
Neural Regen Res ; 18(1): 219-225, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799546

RESUMO

Axonal regeneration in the central nervous system is an energy-intensive process. In contrast to mammals, adult zebrafish can functionally recover from neuronal injury. This raises the question of how zebrafish can cope with this high energy demand. We previously showed that in adult zebrafish, subjected to an optic nerve crush, an antagonistic axon-dendrite interplay exists wherein the retraction of retinal ganglion cell dendrites is a prerequisite for effective axonal repair. We postulate a 'dendrites for regeneration' paradigm that might be linked to intraneuronal mitochondrial reshuffling, as ganglion cells likely have insufficient resources to maintain dendrites and restore axons simultaneously. Here, we characterized both mitochondrial distribution and mitochondrial dynamics within the different ganglion cell compartments (dendrites, somas, and axons) during the regenerative process. Optic nerve crush resulted in a reduction of mitochondria in the dendrites during dendritic retraction, whereafter enlarged mitochondria appeared in the optic nerve/tract during axonal regrowth. Upon dendritic regrowth in the retina, mitochondrial density inside the retinal dendrites returned to baseline levels. Moreover, a transient increase in mitochondrial fission and biogenesis was observed in retinal ganglion cell somas after optic nerve damage. Taken together, these findings suggest that during optic nerve injury-induced regeneration, mitochondria shift from the dendrites to the axons and back again and that temporary changes in mitochondrial dynamics support axonal and dendritic regrowth after optic nerve crush.

8.
Aging Cell ; 21(1): e13537, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927348

RESUMO

As the mammalian central nervous system matures, its regenerative ability decreases, leading to incomplete or non-recovery from the neurodegenerative diseases and central nervous system insults that we are increasingly facing in our aging world population. Current neuroregenerative research is largely directed toward identifying the molecular and cellular players that underlie central nervous system repair, yet it repeatedly ignores the aging context in which many of these diseases appear. Using an optic nerve crush model in a novel biogerontology model, that is, the short-living African turquoise killifish, the impact of aging on injury-induced optic nerve repair was investigated. This work reveals an age-related decline in axonal regeneration in female killifish, with different phases of the repair process being affected depending on the age. Interestingly, as in mammals, both a reduced intrinsic growth potential and a non-supportive cellular environment seem to lie at the basis of this impairment. Overall, we introduce the killifish visual system and its age-dependent regenerative ability as a model to identify new targets for neurorepair in non-regenerating individuals, thereby also considering the effects of aging on neurorepair.


Assuntos
Regeneração Nervosa/fisiologia , Nervo Óptico/fisiopatologia , Fatores Etários , Animais , Fundulidae
9.
Neuroscience ; 470: 52-69, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34280491

RESUMO

Optic neuropathies comprise a group of disorders in which the axons of retinal ganglion cells (RGCs), the retinal projection neurons conveying visual information to the brain, are damaged. This results in visual impairment or even blindness, which is irreversible as adult mammals lack the capacity to repair or replace injured or lost neurons. Despite intensive research, no efficient treatment to induce axonal regeneration in the central nervous system (CNS) is available yet. Autophagy, the cellular recycling response, was shown repeatedly to be elevated in animal models of optic nerve injury, and both beneficial and detrimental effects have been reported. In this study, we subjected spontaneously regenerating adult zebrafish to optic nerve damage (ONC) and revealed that autophagy is enhanced after optic nerve damage in zebrafish, both in RGC axons and somas, as well as in macroglial cells of the retina, the optic nerve and the visual target areas in the brain. Interestingly, the pattern of the autophagic response in the axons followed the spatiotemporal window of axonal regrowth, which suggests that autophagy is ongoing at the growth cones. Pharmacological inhibition of the recycling pathway resulted in accelerated RGC target reinnervation, possibly linked to increased mechanistic target of rapamycin (mTOR) activity, known to stimulate axonal regrowth. Taken together, these intriguing findings underline that further research is warranted to decipher if modulation of autophagy could be an effective therapeutic method to induce CNS regeneration.


Assuntos
Traumatismos do Nervo Óptico , Animais , Autofagia , Axônios , Compressão Nervosa , Regeneração Nervosa , Nervo Óptico , Peixe-Zebra
10.
NPJ Aging Mech Dis ; 7(1): 22, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404797

RESUMO

Worldwide, people are getting older, and this prolonged lifespan unfortunately also results in an increased prevalence of age-related neurodegenerative diseases, contributing to a diminished life quality of elderly. Age-associated neuropathies typically include diseases leading to dementia (Alzheimer's and Parkinson's disease), as well as eye diseases such as glaucoma and age-related macular degeneration. Despite many research attempts aiming to unravel aging processes and their involvement in neurodegeneration and functional decline, achieving healthy brain aging remains a challenge. The African turquoise killifish (Nothobranchius furzeri) is the shortest-lived reported vertebrate that can be bred in captivity and displays many of the aging hallmarks that have been described for human aging, which makes it a very promising biogerontology model. As vision decline is an important hallmark of aging as well as a manifestation of many neurodegenerative diseases, we performed a comprehensive characterization of this fish's aging visual system. Our work reveals several aging hallmarks in the killifish retina and brain that eventually result in a diminished visual performance. Moreover, we found evidence for the occurrence of neurodegenerative events in the old killifish retina. Altogether, we introduce the visual system of the fast-aging killifish as a valuable model to understand the cellular and molecular mechanisms underlying aging in the vertebrate central nervous system. These findings put forward the killifish for target validation as well as drug discovery for rejuvenating or neuroprotective therapies ensuring healthy aging.

11.
Ageing Res Rev ; 62: 101086, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492480

RESUMO

In our ever-aging world population, the risk of age-related neuropathies has been increasing, representing both a social and economic burden to society. Since the ability to regenerate in the adult mammalian central nervous system is very limited, brain trauma and neurodegeneration are often permanent. As a consequence, novel scientific challenges have emerged and many research efforts currently focus on triggering repair in the damaged or diseased brain. Nevertheless, stimulating neuroregeneration remains ambitious. Even though important discoveries have been made over the past decades, they did not translate into a therapy yet. Actually, this is not surprising; while these disorders mainly manifest in aged individuals, most of the research is being performed in young animal models. Aging of neurons and their environment, however, greatly affects the central nervous system and its capacity to repair. This review provides a detailed overview of the impact of aging on central nervous system functioning and regeneration potential, both in non-regenerating and spontaneously regenerating animal models. Additionally, we highlight the need for aging animal models with regenerative capacities in the search for neuroreparative strategies.


Assuntos
Sistema Nervoso Central , Regeneração Nervosa , Envelhecimento , Animais , Humanos , Modelos Animais , Neurônios
12.
Neural Regen Res ; 14(8): 1313-1316, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30860164

RESUMO

Dendrites form an essential component of the neuronal circuit have been largely overlooked in regenerative research. Nevertheless, subtle changes in the dendritic arbors of neurons are one of the first stages of various neurodegenerative diseases, leading to dysfunctional neuronal networks and ultimately cellular death. Maintaining dendrites is therefore considered an essential neuroprotective strategy. This mini-review aims to discuss an intriguing hypothesis, which postulates that dendritic shrinkage is an important stimulant to boost axonal regeneration, and thus that preserving dendrites might not be the ideal therapeutic method to regain a full functional network upon central nervous system damage. Indeed, our study in zebrafish, a versatile animal model with robust regenerative capacity recently unraveled that dendritic retraction is evoked prior to axonal regrowth after optic nerve injury. Strikingly, inhibiting dendritic pruning upon damage perturbed axonal regeneration. This constraining effect of dendrites on axonal regrowth has sporadically been proposed in literature, as summarized in this short narrative. In addition, the review discusses a plausible underlying mechanism for the observed antagonistic axon-dendrite interplay, which is based on energy restriction inside neurons. Axonal injury indeed leads to a high local energy demand in which efficient axonal energy supply is fundamental to ensure regrowth. At the same time, axonal lesion is known to induce mitochondrial depolarization, causing energy depletion in the axonal compartment of damaged neurons. Mitochondria, however, become mostly stationary after development, which has been proposed as a potential underlying reason for the low regenerative capacity of adult mammals. Per contra, upon reduced neuronal activity, mitochondrial mobility enhances. In this view, dendritic shrinkage after axonal injury in zebrafish could result in less synaptic input and hence, a release of mitochondria within the soma-dendrite compartment that then translocate to the axonal growth cone to stimulate axonal regeneration. If this hypothesis proofs to be correct, i.e. dendritic remodeling serving as fuel for axonal regeneration, we envision a major shift in the research focus within the neuroregenerative field and in the potential uncovering of various novel therapeutic targets.

13.
Endocrinology ; 160(11): 2759-2772, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504428

RESUMO

Thyroid hormones (THs) are crucial regulators of glucose metabolism and insulin sensitivity. Moreover, inactivating mutations in type 2 deiodinase (DIO2), the major TH-activating enzyme, have been associated with type 2 diabetes mellitus in both humans and mice. We studied the link between Dio2 deficiency and glucose homeostasis in fasted males of two different Dio2 knockout (KO) zebrafish lines. Young adult Dio2KO zebrafish (6 to 9 months) were hyperglycemic. Both insulin and glucagon expression were increased, whereas ß and α cell numbers in the main pancreatic islet were similar to those in wild-types. Insulin receptor expression in skeletal muscle was decreased at 6 months, accompanied by a strong downregulation of hexokinase and pyruvate kinase expression. Blood glucose levels in Dio2KO zebrafish, however, normalized around 1 year of age. Older mutants (18 to 24 months) were normoglycemic, and increased insulin and glucagon expression was accompanied by a prominent increase in pancreatic islet size and ß and α cell numbers. Older Dio2KO zebrafish also showed strongly decreased expression of glucagon receptors in the gastrointestinal system as well as decreased expression of glucose transporters GLUT2 and GLUT12, glucose-6-phosphatase, and glycogen synthase 2. This study shows that Dio2KO zebrafish suffer from transient hyperglycemia, which is counteracted with increasing age by a prominent hyperplasia of the endocrine pancreas together with decreases in hepatic glucagon sensitivity and intestinal glucose uptake. Further research on the mechanisms allowing compensation in older Dio2KO zebrafish may help to identify new therapeutic targets for (TH deficiency-related) hyperglycemia.


Assuntos
Glucose/metabolismo , Iodeto Peroxidase/deficiência , Envelhecimento/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Homeostase , Hiperglicemia/genética , Iodeto Peroxidase/genética , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Masculino , Proglucagon/metabolismo , Proinsulina/metabolismo , Receptor de Insulina/metabolismo , Receptores de Glucagon/metabolismo , Peixe-Zebra , Iodotironina Desiodinase Tipo II
14.
Mol Neurobiol ; 56(5): 3175-3192, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30105671

RESUMO

Neural insults and neurodegenerative diseases typically result in permanent functional deficits, making the identification of novel pro-regenerative molecules and mechanisms a primary research topic. Nowadays, neuroregenerative research largely focuses on improving axonal regrowth, leaving the regenerative properties of dendrites largely unstudied. Moreover, whereas developmental studies indicate a strict temporal separation of axogenesis and dendritogenesis and thus suggest a potential interdependency of axonal and dendritic outgrowth, a possible axon-dendrite interaction during regeneration remains unexplored. To unravel the inherent dendritic response of vertebrate neurons undergoing successful axonal regeneration, regeneration-competent adult zebrafish of either sex, subjected to optic nerve crush (ONC), were used. A longitudinal study in which retinal ganglion cell (RGC) dendritic remodeling and axonal regrowth were assessed side-by-side after ONC, revealed that-as during development-RGC axogenesis precedes dendritogenesis during central nervous system (CNS) repair. Moreover, dendrites majorly shrank before the start of axonal regrowth and were only triggered to regrow upon RGC target contact initiation, altogether suggestive for a counteractive interplay between axons and dendrites after neuronal injury. Strikingly, both retinal mechanistic target of rapamycin (mTOR) and broad-spectrum matrix metalloproteinase (MMP) inhibition after ONC consecutively inhibited RGC synapto-dendritic deterioration and axonal regrowth, thus invigorating an antagonistic interplay wherein mature dendrites restrain axonal regrowth. Altogether, this work launches dendritic shrinkage as a prerequisite for efficient axonal regrowth of adult vertebrate neurons, and indicates that molecular/mechanistic analysis of dendritic responses after damage might represent a powerful target-discovery platform for neural repair.


Assuntos
Axônios/metabolismo , Sistema Nervoso Central/fisiologia , Dendritos/metabolismo , Regeneração Nervosa , Peixe-Zebra/fisiologia , Animais , Axônios/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
15.
Neurobiol Aging ; 60: 1-10, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28917662

RESUMO

Dysfunction of the central nervous system (CNS) in neurodegenerative diseases or after brain lesions seriously affects life quality of a growing number of elderly, since the adult CNS lacks the capacity to replace or repair damaged neurons. Despite intensive research efforts, full functional recovery after CNS disease and/or injury remains challenging, especially in an aging environment. As such, there is a rising need for an aging model in which the impact of aging on successful regeneration can be studied. Here, we introduce the senescent zebrafish retinotectal system as a valuable model to elucidate the cellular and molecular processes underlying age-related decline in axonal regeneration capacities. We found both intrinsic and extrinsic response processes to be altered in aged fish. Indeed, expression levels of growth-associated genes are reduced in naive and crushed retinas, and the injury-associated increase in innate immune cell density appears delayed, suggesting retinal inflammaging in old fish. Strikingly, however, despite a clear deceleration in regeneration onset and early axon outgrowth leading to an overall slowing of optic nerve regeneration, reinnervation of the optic tectum and recovery of visual function occurs successfully in the aged zebrafish retinotectal system.


Assuntos
Envelhecimento/fisiologia , Fenômenos Fisiológicos Celulares/fisiologia , Senescência Celular/fisiologia , Regeneração Nervosa/fisiologia , Nervo Óptico/fisiologia , Peixe-Zebra/fisiologia , Animais , Modelos Animais , Colículos Superiores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA