Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Bioorg Chem ; 153: 107773, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39241583

RESUMO

Antimicrobial resistance poses a global health concern and develops a need to discover novel antimicrobial agents or targets to tackle this problem. Fluoroquinolone (FN), a DNA gyrase and topoisomerase IV inhibitor, has helped to conquer antimicrobial resistance as it provides flexibility to researchers to rationally modify its structure to increase potency and efficacy. This review provides insights into the rational modification of FNs, the causes of resistance to FNs, and the mechanism of action of FNs. Herein, we have explored the latest advancements in antimicrobial activities of FN analogues and the effect of various substitutions with a focus on utilizing the FN nucleus to search for novel potential antimicrobial candidates. Moreover, this review also provides a comparative analysis of two widely prescribed FNs that are ciprofloxacin and norfloxacin, explaining their rationale for their design, structure-activity relationships (SAR), causes of resistance, and mechanistic studies. These insights will prove advantageous for new researchers by aiding them in designing novel and effective FN-based compounds to combat antimicrobial resistance.

2.
Bioorg Chem ; 143: 107042, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118298

RESUMO

Hyperuricemia, a disease characterized by elevation of serum uric acid level beyond 6 mg/dL. This elevation led to appearance of symptoms from joint pain to gout and from gout to difficulty in mobility of the patient. So, in this review, we have summarized the pathology of hyperuricemia, discovery of target and discovery of first XO inhibitor. At last, this review provides in-sights about the recently discovered as natural XO inhibitors, followed by design, structure activity relationship and biological activity of synthetic compounds as XO inhibitors discovered between 2020 and 2023 years. At last, the pharmacophores generated in this study will guide new researchers to design and modify the structure of novel XO inhibitors.


Assuntos
Gota , Hiperuricemia , Humanos , Hiperuricemia/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Ácido Úrico , Xantina Oxidase
3.
Mol Divers ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253844

RESUMO

Thiazolidinedione has been used successfully by medicinal chemists all over the world in the development of potent antidiabetic derivatives. The few compounds with excellent antidiabetic potency that we have identified in this review could be used as a lead for further research into additional antidiabetic mechanisms. The information provided in this review regarding the design, biological activity, structure-activity relationships, and docking studies may be useful for scientists who wish to further explore this scaffold in order to fully utilize its biological potential and develop antidiabetic agents that would overcome the limitations of currently available medications for the treatment of diabetes. This review outlines the antidiabetic potential of Thiazolidinedione-based derivatives that have been published in the year 2021- till date.

4.
Mol Divers ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164505

RESUMO

Xanthine oxidase (XO) inhibitors, both synthetic and semisynthetic, have been developed extensively over the past few decades. The increased level of XO is not only the major cause of gout but is also responsible for various conditions associated with hyperuricemia, such as cardiovascular disorders, chronic kidney disorders, diabetes, Alzheimer's disease and chronic wounds. Marketed available XO inhibitors (allopurinol, febuxostat, and topiroxostat) are used to treat hyperuricemia but they are associated with fatal side effects, which pose serious problems for the healthcare system, rising the need for new, more potent, safer compounds. This review summarizes recent findings on XO and describes their design, synthesis, biological significance in the development of anti-hyperuricemic drugs with ADME profile, structure activity relationship (SAR) and molecular docking studies. The results might help medicinal chemists to develop more efficacious XO inhibitors.

5.
Arch Pharm (Weinheim) ; 357(4): e2300296, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38196114

RESUMO

Considerable ingenuity has been shown in the recent years in the discovery of novel xanthine oxidase (XO) inhibitors that fall outside the purine scaffold. The triazole nucleus has been the cornerstone for the development of many enzyme inhibitors for the clinical management of several diseases, where hyperuricemia is one of them. Here, we give a critical overview of significant research on triazole-based XO inhibitors, with respect to their design, synthesis, inhibition potential, toxicity, and docking studies, done till now. Based on these literature findings, we can expect a burst of modifications on triazole-based scaffolds in the near future by targeting XO, which will treat hyperuricemics, that is, painful conditions like gout that at present are hard to deal with.


Assuntos
Hiperuricemia , Xantina Oxidase , Humanos , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Hiperuricemia/tratamento farmacológico , Triazóis/farmacologia , Simulação de Acoplamento Molecular
6.
Mol Cell Biochem ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37329491

RESUMO

Breast cancer is most common in women and most difficult to manage that causes highest mortality and morbidity among all diseases and posing significant threat to mankind as well as burden on healthcare system. In 2020, 2.3 million women were diagnosed with breast cancer and it was responsible for 685,000 deaths globally, suggesting the severity of this disease. Apart from that, relapsing of cases and resistance among available anticancer drugs along with associated side effects making the situation even worse. Therefore, it is a global emergency to develop potent and safer antibreast cancer agents. Isatin is most versatile and flying one nucleus which is an integral competent and various anticancer agent in clinical practice and widely used by various research groups around the globe for development of novel, potent, and safer antibreast cancer agents. This review will shed light on the structural insights and antiproliferative potential of various isatin-based derivatives developed for targeting breast cancer in last three decades that will help researchers in design and development of novel, potent, and safer isatin-based antibreast cancer agents.

7.
Mol Divers ; 27(4): 1905-1934, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36197551

RESUMO

Emergence of antimicrobial resistance has become a great threat to human species as there is shortage of development of new antimicrobial agents. So, its mandatary to combat AMR by initiating research and developing new novel antimicrobial agents. Among phytoconstituents, Quinoline (nitrogen containing heterocyclic) have played a wide role in providing new bioactive molecules. So, this review provides rational approaches, design strategies, structure activity relationship and mechanistic insights of newly developed quinoline derivatives as antimicrobial agents.


Assuntos
Anti-Infecciosos , Quinolinas , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Relação Estrutura-Atividade , Quinolinas/farmacologia , Quinolinas/química
8.
Arch Pharm (Weinheim) ; 355(2): e2100368, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783073

RESUMO

Keeping in view the emerging need for potent and safer anti-breast cancer agents as well as the pharmacological attributes of isatin, quinolone, and morpholine derivatives, novel hydrazine-linked morpholinated isatin-quinoline hybrids were designed, synthesized, and evaluated as anti-breast cancer agents. The synthesized hybrid compounds were preliminarily screened against two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all synthetics showed potent inhibitory potential against hormone-positive MCF-7 cells while being inactive against hormone-negative MDA-MB-231 cells. Potent compounds were further evaluated against the L929 (noncancerous skin fibroblast) cell line and found to be highly selective for MCF-7 cells over L929 cells. Cell cycle analysis confirmed that the most potent compound AS-4 (MCF-7: GI50 = 4.36 µM) causes mitotic arrest at the G2 /M phase. Due to higher selectivity toward estrogen receptor alpha (ERα)-dependent MCF-7 cells, various binding interactions of AS-4 with ERα are also streamlined, suggesting the capability of AS-4 to completely block ERα. Overall, the study suggests that AS-4 can act as a potential lead for further development of potent and safer anti-breast cancer agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Isatina/farmacologia , Quinolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Isatina/síntese química , Isatina/química , Células MCF-7 , Camundongos , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
9.
Mol Divers ; 25(1): 603-624, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32886304

RESUMO

Breast cancer is the most prominent, frequently diagnosed and leading cause of death among women. Estrogen is an agonist of estrogen receptor alpha (ER-α), expressed in mammary glands and is responsible for initiating many signalling pathways that lead to differentiation and development of breast tissue. Any mutations in these signalling pathways result in irregular growth of mammary tissue, leading to the development of tumour or cancer. All these observations attract the attention of researchers to antagonize ER-α receptor either by developing selective estrogen receptor modulators or by selective estrogen receptor degraders. Therefore, this article provides a brief overview of various factors that are responsible for provoking breast cancer in women and design strategies recently used by the various research groups across the world for antagonizing or demodulating ER-α.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Terapia de Alvo Molecular , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Modelos Moleculares
10.
Mol Cell Biochem ; 453(1-2): 1-9, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30194582

RESUMO

We investigated the involvement of peroxisome proliferator activated receptor-γ (PPAR-γ)/endothelial nitric oxide synthase (eNOS) pathway in estradiol mediated protection against ischemia reperfusion (I/R)-induced acute kidney injury (AKI) in rats. To induce AKI, rats underwent 40 min of bilateral renal ischemia followed by 24 h of reperfusion. I/R-induced kidney damage was quantified by measuring serum creatinine, creatinine clearance, urea nitrogen, uric acid, potassium, fractional excretion of sodium, microproteinuria, and renal oxidative stress (thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione). Hematoxylin eosin stain demonstrated renal histology, while renal expression of apoptotic markers (Bcl-2, Bax), PPAR-γ and eNOS were quantified by immunohistochemistry. Estradiol (1 mg/kg, i.p.) was administered 30 min before I/R in rats. In separate groups, PPAR-γ antagonist, BADGE (30 mg/kg, i.p.), and NOS inhibitor, L-NAME (20 mg/kg, i.p.) were administered prior to estradiol treatment, which was followed by I/R in rats. I/R caused significant renal damage as demonstrated by biochemical (serum/urine), renal oxidative stress and histological changes alongwith increased expression of Bax and decreased levels of Bcl-2, PPAR-γ and eNOS, which were prevented by estradiol. Pre-treatment with BADGE and L-NAME abolished estradiol mediated renoprotection. Notably, I/R + estradiol + BADGE group revealed decreased expression of PPAR-γ and eNOS in renal tissues. In I/R + estradiol + L-NAME group, eNOS expression was reduced while PPAR-γ levels remained unchanged. These results suggest that estradiol modulates PPAR-γ which consequently regulates eNOS expression in rat kidneys. We conclude that estradiol protects against I/R-induced AKI through PPAR-γ stimulated eNOS activation in rats.


Assuntos
Injúria Renal Aguda , Estradiol/farmacocinética , Óxido Nítrico Sintase Tipo III/metabolismo , PPAR gama/metabolismo , Traumatismo por Reperfusão , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Ativação Enzimática/efeitos dos fármacos , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Proteína X Associada a bcl-2/metabolismo
11.
Mol Cell Biochem ; 434(1-2): 33-40, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28432550

RESUMO

In the present study, we investigated possible involvement of N-methyl-D-aspartate receptors (NMDAR) in estradiol mediated protection against ischemia reperfusion (I/R)-induced acute renal failure (ARF) in rats. Bilateral renal ischemia of 40 min followed by reperfusion for 24 h induced ARF in male wistar rats. Quantification of serum creatinine, creatinine clearance (CrCl), blood urea nitrogen (BUN), uric acid, potassium, fractional excretion of sodium (FeNa), and urinary microproteins was done to assess I/R-induced renal damage in rats. Oxidative stress in kidneys was measured in terms of myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Hematoxylin & eosin and periodic acid Schiff stains were used to reveal structural changes in renal tissues. Estradiol benzoate (0.5 and 1.0 mg/kg, intraperitoneally, i.p.) was administered 1 h prior to I/R in rats. In separate groups, rats were treated with NMDAR agonists, glutamic acid (200 mg/kg, i.p.), and spermidine (20 mg/kg, i.p.) before administration of estradiol. Marked increase in serum creatinine, BUN, uric acid, serum potassium, FeNa, microproteinuria, and reduction in CrCl demonstrated I/R-induced ARF in rats. Treatment with estradiol mitigated I/R-induced changes in serum/urine parameters. Moreover, estrogen attenuated oxidative stress and structural changes in renal tissues. Prior administration of glutamic acid and spermidine abolished estradiol mediated renoprotection in rats. These results indicate the involvement of NMDAR in estradiol mediated renoprotective effect. In conclusion, we suggest that NMDAR antagonism serves as one of the mechanisms in estradiol-mediated protection against I/R-induced ARF in rats.


Assuntos
Injúria Renal Aguda/prevenção & controle , Estradiol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Rim/irrigação sanguínea , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/patologia , Animais , Nitrogênio da Ureia Sanguínea , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/prevenção & controle , Ratos , Ratos Wistar , Ácido Úrico/sangue
12.
Mol Cell Biochem ; 417(1-2): 111-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27206738

RESUMO

The present study investigated the role of N-methyl-D-aspartate (NMDA) receptors in pioglitazone-mediated protection against renal ischemia reperfusion injury (IRI) in rats. Male wistar rats were subjected to 40 min of bilateral renal ischemia followed by reperfusion for 24 h to induce kidney injury. The renal damage was evaluated by measuring serum creatinine, creatinine clearance, blood urea nitrogen, uric acid, electrolytes, and microproteinuria in rats. Oxidative stress in renal tissues was quantified in terms of myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione level. Hematoxylin-eosin and periodic acid Schiff staining of renal tissues were performed to observe histological changes. Pioglitazone (20 and 40 mg/kg) was administered 1 h prior to ischemia in rats. In separate groups, NMDA agonists, glutamic acid (200 mg/kg), and spermidine (20 mg/kg) were administered 1 h prior to pioglitazone treatment, followed by renal IRI in rats. Ischemia reperfusion resulted in marked renal damage with significant changes in serum and urine parameters along with marked oxidative stress and histological changes in kidneys. Pioglitazone treatment afforded anti-oxidant effect and renoprotection in a dose-dependent manner in rats. Pioglitazone-mediated renoprotection was attenuated by glutamic acid and spermidine pretreatment in rats, which indicated the role of NMDA receptors in pioglitazone-mediated protection. It is concluded that NMDA antagonism serves as one of the mechanisms in pioglitazone-mediated protection against renal IRI in rats.


Assuntos
Nefropatias , Receptores de N-Metil-D-Aspartato , Traumatismo por Reperfusão , Tiazolidinedionas/farmacologia , Animais , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Masculino , Pioglitazona , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
13.
Chem Pharm Bull (Tokyo) ; 64(5): 399-409, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27150472

RESUMO

In the present study, a series of 2,4-diarylpyrano[3,2-c]chromen-5(4H)-ones were synthesised and evaluated as antiproliferative agents. The compounds were evaluated against a panel of human cancer cell lines. CH-1 exhibited significant cytoxicity against HCT 116 cell lines with an IC50 value of 1.4 and 4.3 µM against "MiaPaCa-2" cell lines. The compound CH-1 was found to induce apoptosis as evidenced by phase contrast microscopy, Hoechst 33258 staining and mitochondrial membrane potential (MMP) loss. The cell phase distribution studies indicated that the apoptotic population increased from 10.22% in the control sample to 57.19% in a sample treated with 20 µM compound CH-1.


Assuntos
Antineoplásicos/farmacologia , Cromonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Biomedicines ; 12(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927399

RESUMO

Breast cancer is the most common cancer among women. Currently, it poses a significant threat to the healthcare system due to the emerging resistance and toxicity of available drug candidates in clinical practice, thus generating an urgent need for the development of new potent and safer anti-breast cancer drug candidates. Coumarin (chromone-2-one) is an elite ring system widely distributed among natural products and possesses a broad range of pharmacological properties. The unique distribution and pharmacological efficacy of coumarins attract natural product hunters, resulting in the identification of numerous natural coumarins from different natural sources in the last three decades, especially those with anti-breast cancer properties. Inspired by this, numerous synthetic derivatives based on coumarins have been developed by medicinal chemists all around the globe, showing promising anti-breast cancer efficacy. This review is primarily focused on the development of coumarin-inspired anti-breast cancer agents in the last three decades, especially highlighting design strategies, mechanistic insights, and their structure-activity relationship. Natural coumarins having anti-breast cancer efficacy are also briefly highlighted. This review will act as a guideline for researchers and medicinal chemists in designing optimum coumarin-based potent and safer anti-breast cancer agents.

15.
Chem Biol Drug Des ; 102(3): 606-639, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37220949

RESUMO

Fungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4-triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14α-demethylase (CYP51) is responsible for the oxidative removal of 14α-methyl group of sterol precursors lanosterol and 24(28)-methylene-24,25-dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole- as well as non-azoles-based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.


Assuntos
Antifúngicos , Lanosterol , Antifúngicos/farmacologia , Antifúngicos/química , Esterol 14-Desmetilase/química , Azóis/farmacologia , Azóis/química , Desenvolvimento de Medicamentos
16.
ACS Chem Neurosci ; 14(18): 3291-3317, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37683129

RESUMO

Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Proteínas Amiloidogênicas , Cálcio , Ácido Glutâmico , Triazóis/farmacologia
17.
Nat Prod Res ; 37(16): 2795-2800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36214700

RESUMO

Induction of hypersensitivity reactions (may be fatal too) by specific XO inhibitors has led to development of new molecules that are efficacious and have safer ADME profile. Among natural compounds, biologically active Alkannin/Shikonin (A/S) derivatives have unexplored XO inhibition potential. Therefore, their iso-hexenylnaphthazarin nucleus was studied and found that the nucleus is similar to that of allopurinol, signifying the XO inhibitory potential of these derivatives. For confirmation of their potential, ß,ß-dimethylacrylshikonin and deoxyshikonin were successfully isolated and characterised from Arnebia euchroma (Royle.) Johnst. (Boraginaceae) and were evaluated for in vitro XO inhibitory potential. ß,ß-dimethylacrylshikonin and deoxyshikonin showed a good XO inhibition potential with IC50 values of 7.475 ± 1.46 µg/mL and 4.487 ± 0.88 µg/mL, respectively. Results also validated the pharmacophore hypothesis, and it was concluded that nucleus iso-hexenylnaphthazarin can be remodelled for optimising the efficacy.

18.
Chem Biol Drug Des ; 100(3): 443-468, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35763448

RESUMO

Inhibition of xanthine oxidase (XO) is an effective and most prominent therapeutic approach for the management of gout. Discovery of its association in the pathophysiology of diabetes, cardiovascular disorders, etc., widened its therapeutic horizons. Limited drug candidates in clinical practice along with side effects forced researchers to develop more efficacious and safer XO inhibitors for the management of gout and other disorders associated with XO hyperactivity. In this regard, this review focus on (a) various drug candidates in clinical practice and under clinical trials, (b) Development of various heterocyclic motifs as XO inhibitors in last two decades and (c) various patented synthetic XO inhibitors.


Assuntos
Gota , Xantina Oxidase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Gota/tratamento farmacológico , Humanos
19.
Expert Opin Ther Pat ; 32(10): 1079-1095, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36189616

RESUMO

INTRODUCTION: Dihydrofolate reductase (DHFR) plays an important role in the biosynthesis of amino acid and folic acid. It participates by reducing dihydrofolate to tetrahydrofolate, in the presence of nicotinamide dinucleotide phosphate cofactor, and has been verified by various clinical studies to use DHFR as a target for the treatment of cancer and various bacterial infections. AREA COVERED: In this review, we have disclosed patents of synthetics and natural DHFR inhibitors with diaminopyrimidine and quinazoline nucleus from 2001. Additionally, this review highlights the clinical progression of numerous DHFR inhibitors received from the last five years. EXPERT OPINION: From 2001 to 2021, numerous active chemical scaffolds have been introduced and are exposed as lead candidates that have entered clinical trials as potent DHFR inhibitors. Moreover, researchers have paid considerable attention to the development of a new class of DHFR inhibitors with higher selectivity and potency. This development includes synthesis of synthetic as well as natural compounds that are potent DHFR inhibitors. On the basis of literature review, we can anticipate that there are a huge number of novel active molecules available for the future that could possess superior abilities to target this enzyme with a profound pharmacological profile.


Assuntos
Antagonistas do Ácido Fólico , Humanos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Patentes como Assunto , Ácido Fólico , Aminoácidos , Tetra-Hidrofolatos , Quinazolinas , Niacinamida , Fosfatos
20.
Nat Prod Res ; 36(18): 4804-4808, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34906016

RESUMO

Novel coronavirus disease, a serious challenge for the healthcare system, has diverted all the researchers toward the exploration of potential targets, compounds or vaccines for the management of this disease. Mpro enzyme was found to be crucial for replication of this virus which makes this enzyme an attractive drug target for SARS-CoV-2. Diverse pharmacological profile of Alkannin/shikonin (A/S) derivatives build up curiosity to study their antiviral profile. Therefore, current study utilises various computational tools to screen and evaluate all the discovered A/S derivatives to inhibit the Mpro enzyme for its anti-viral activity. Results revealed that the A/S has a very good tendency to inhibit the catalytic activity of the enzyme. Moreover, (5 R,6R)-5,8-dihydroxy-6-methoxy-3,4,5,6-tetrahydro-2H-benzo[a]anthracene-1, 7, 12-trione, an A/S derivative was found to possess drug-likeliness properties and a good ADME profile. Moreover, its complex with Mpro enzyme was found stable for 50 ns which makes it a very promising ligand to treat COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Proteases 3C de Coronavírus , Cisteína Endopeptidases , Humanos , Simulação de Acoplamento Molecular , Naftoquinonas , Inibidores de Proteases/farmacologia , RNA Viral , Proteínas não Estruturais Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA