Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945650

RESUMO

The emerging field of spatially resolved transcriptomics (SRT) has revolutionized biomedical research. SRT quantifies expression levels at different spatial locations, providing a new and powerful tool to interrogate novel biological insights. An essential question in the analysis of SRT data is to identify spatially variable (SV) genes; the expression levels of such genes have spatial variation across different tissues. SV genes usually play an important role in underlying biological mechanisms and tissue heterogeneity. Currently, several computational methods have been developed to detect such genes; however, there is a lack of unbiased assessment of these approaches to guide researchers in selecting the appropriate methods for their specific biomedical applications. In addition, it is difficult for researchers to implement different existing methods for either biological study or methodology development. Furthermore, currently available public SRT datasets are scattered across different websites and preprocessed in different ways, posing additional obstacles for quantitative researchers developing computational methods for SRT data analysis. To address these challenges, we designed Spatial Transcriptomics Arena (STAr), an open platform comprising 193 curated datasets from seven technologies, seven statistical methods, and analysis results. This resource allows users to retrieve high-quality datasets, apply or develop spatial gene detection methods, as well as browse and compare spatial gene analysis results. It also enables researchers to comprehensively evaluate SRT methodology research in both simulated and real datasets. Altogether, STAr is an integrated research resource intended to promote reproducible research and accelerate rigorous methodology development, which can eventually lead to an improved understanding of biological processes and diseases. STAr can be accessed at https://lce.biohpc.swmed.edu/star/ .

2.
PLoS One ; 17(2): e0261103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196314

RESUMO

A variety of islet autoantibodies (AAbs) can predict and possibly dictate eventual type 1 diabetes (T1D) diagnosis. Upwards of 75% of those with T1D are positive for AAbs against glutamic acid decarboxylase (GAD65 or GAD), a producer of gamma-aminobutyric acid (GABA) in human pancreatic beta cells. Interestingly, bacterial populations within the human gut also express GAD and produce GABA. Evidence suggests that dysbiosis of the microbiome may correlate with T1D pathogenesis and physiology. Therefore, autoimmune linkages between the gut microbiome and islets susceptible to autoimmune attack need to be further elucidated. Utilizing in silico analyses, we show that 25 GAD sequences from human gut bacterial sources show sequence and motif similarities to human beta cell GAD65. Our motif analyses determined that most gut GAD sequences contain the pyroxical dependent decarboxylase (PDD) domain of human GAD65, which is important for its enzymatic activity. Additionally, we showed overlap with known human GAD65 T cell receptor epitopes, which may implicate the immune destruction of beta cells. Thus, we propose a physiological hypothesis in which changes in the gut microbiome in those with T1D result in a release of bacterial GAD, thus causing miseducation of the host immune system. Due to the notable similarities we found between human and bacterial GAD, these deputized immune cells may then target human beta cells leading to the development of T1D.


Assuntos
Autoanticorpos/imunologia , Bactérias/enzimologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/imunologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Simulação por Computador , Diabetes Mellitus Tipo 1/enzimologia , Epitopos de Linfócito T/imunologia , Genes Bacterianos , Humanos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/imunologia , Camundongos , Pan troglodytes/microbiologia , Filogenia , Domínios Proteicos , Alinhamento de Sequência/métodos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA