Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 18(7): 752-759, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160804

RESUMO

Hydrogen production from water electrolysis is a key enabling energy storage technology for the large-scale deployment of intermittent renewable energy sources. Proton ceramic electrolysers (PCEs) can produce dry pressurized hydrogen directly from steam, avoiding major parts of cost-driving downstream separation and compression. However, the development of PCEs has suffered from limited electrical efficiency due to electronic leakage and poor electrode kinetics. Here, we present the first fully operational BaZrO3-based tubular PCE, with 10 cm2 active area and a hydrogen production rate above 15 Nml min-1. The novel steam anode Ba1-xGd0.8La0.2+xCo2O6-δ exhibits mixed p-type electronic and protonic conduction and low activation energy for water splitting, enabling total polarization resistances below 1 Ω cm2 at 600 °C and Faradaic efficiencies close to 100% at high steam pressures. These tubular PCEs are mechanically robust, tolerate high pressures, allow improved process integration and offer scale-up modularity.

2.
Science ; 376(6591): 390-393, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35446633

RESUMO

Proton ceramic reactors offer efficient extraction of hydrogen from ammonia, methane, and biogas by coupling endothermic reforming reactions with heat from electrochemical gas separation and compression. Preserving this efficiency in scale-up from cell to stack level poses challenges to the distribution of heat and gas flows and electric current throughout a robust functional design. Here, we demonstrate a 36-cell well-balanced reactor stack enabled by a new interconnect that achieves complete conversion of methane with more than 99% recovery to pressurized hydrogen, leaving a concentrated stream of carbon dioxide. Comparable cell performance was also achieved with ammonia, and the operation was confirmed at pressures exceeding 140 bars. The stacking of proton ceramic reactors into practical thermo-electrochemical devices demonstrates their potential in efficient hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA