Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 33(1): 39-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758983

RESUMO

BACKGROUND: Accumulating evidence supports an association between nephron number and susceptibility to kidney disease. However, it is not yet possible to directly measure nephron number in a clinical setting. Recent clinical studies have used glomerular density from a single biopsy and whole kidney cortical volume from imaging to estimate nephron number and single nephron glomerular filtration rate. However, the accuracy of these estimates from individual subjects is unknown. Furthermore, it is not clear how sample size or biopsy location may influence these estimates. These questions are critical to study design, and to the potential translation of these tools to estimate nephron number in individual subjects. METHODS: We measured the variability in estimated nephron number derived from needle or virtual biopsies and cortical volume in human kidneys declined for transplantation. We performed multiple needle biopsies in the same kidney, and examined the three-dimensional spatial distribution of nephron density by magnetic resonance imaging. We determined the accuracy of a single-kidney biopsy to predict the mean nephron number estimated from multiple biopsies from the same kidney. RESULTS: A single needle biopsy had a 15% chance and virtual biopsy had a 60% chance of being within 20% of the whole-kidney nephron number. Single needle biopsies could be used to detect differences in nephron number between large cohorts of several hundred subjects. CONCLUSIONS: The number of subjects required to accurately detect differences in nephron number between populations can be predicted on the basis of natural intrakidney variability in glomerular density. A single biopsy is insufficient to accurately predict nephron number in individual subjects.


Assuntos
Néfrons/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Néfrons/diagnóstico por imagem , Tamanho do Órgão , Reprodutibilidade dos Testes , Adulto Jovem
2.
Am J Physiol Renal Physiol ; 321(3): F293-F304, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282957

RESUMO

Kidney pathologies are often highly heterogeneous. To comprehensively understand kidney structure and pathology, it is critical to develop tools to map tissue microstructure in the context of the whole, intact organ. Magnetic resonance imaging (MRI) can provide a unique, three-dimensional view of the kidney and allows for measurements of multiple pathological features. Here, we developed a platform to systematically render and map gross and microstructural features of the human kidney based on three-dimensional MRI. These features include pyramid number and morphology as well as the associated medulla and cortex. In a subset of these kidneys, we also mapped individual glomeruli and glomerular volumes using cationic ferritin-enhanced MRI to report intrarenal heterogeneity in glomerular density and size. Finally, we rendered and measured regions of nephron loss due to pathology and individual glomerular volumes in each pyramidal unit. This work provides new tools to comprehensively evaluate the kidney across scales, with potential applications in anatomic and physiological research, transplant allograft evaluation, biomarker development, biopsy guidance, and therapeutic monitoring. These image rendering and analysis tools could eventually impact the field of transplantation medicine to improve longevity matching of donor allografts and recipients and reduce discard rates through the direct assessment of donor kidneys.NEW & NOTEWORTHY We report the application of cutting-edge image analysis approaches to characterize the pyramidal geometry, glomerular microstructure, and heterogeneity of the whole human kidney imaged using MRI. This work establishes a framework to improve the detection of microstructural pathology to potentially facilitate disease monitoring or transplant evaluation in the individual kidney.


Assuntos
Processamento de Imagem Assistida por Computador , Nefropatias/patologia , Glomérulos Renais/patologia , Néfrons/patologia , Ferritinas/metabolismo , Humanos , Rim/patologia , Glomérulos Renais/metabolismo , Imageamento por Ressonância Magnética/métodos , Sistema Urinário/patologia
3.
Am J Physiol Renal Physiol ; 320(2): F183-F192, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283644

RESUMO

Nephron number varies widely in humans. A low nephron endowment at birth or a loss of functioning nephrons is strongly linked to increased susceptibility to chronic kidney disease. In this work, we developed a contrast agent, radiolabeled cationic ferritin (RadioCF), to map functioning glomeruli in vivo in the kidney using positron emission tomography (PET). PET radiotracers can be detected in trace doses (<30 nmol), making them useful for rapid clinical translation. RadioCF is formed from cationic ferritin (CF) and with a radioisotope, Cu-64, incorporated into the ferritin core. We showed that RadioCF binds specifically to kidney glomeruli after intravenous injection in mice, whereas radiolabeled noncationic ferritin (RadioNF) and free Cu-64 do not. We then showed that RadioCF-PET can distinguish kidneys in healthy wild-type (WT) mice from kidneys in mice with oligosyndactylism (Os/+), a model of congenital hypoplasia and low nephron mass. The average standardized uptake value (SUV) measured by PET 90 min after injection was 21% higher in WT mice than in Os/+ mice, consistent with the higher glomerular density in WT mice. The difference in peak SUV from SUV at 90 min correlated with glomerular density in male mice from both WT and Os/+ cohorts (R2 = 0.98). Finally, we used RadioCF-PET to map functioning glomeruli in a donated human kidney. SUV within the kidney correlated with glomerular number (R2= 0.78) measured by CF-enhanced magnetic resonance imaging in the same locations. This work suggests that RadioCF-PET appears to accurately detect nephron mass and has the potential for clinical translation.


Assuntos
Ferritinas/química , Ferritinas/metabolismo , Néfrons/anatomia & histologia , Idoso , Animais , Meios de Contraste , Radioisótopos de Cobre , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/anatomia & histologia , Transplante de Rim , Masculino , Camundongos , Tomografia por Emissão de Pósitrons , Doadores de Tecidos
4.
Int J Obes (Lond) ; 44(8): 1776-1783, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32231252

RESUMO

BACKGROUND: Molecular oxygen (O2) plays a key role in normal and pathological adipose tissue function, yet technologies to measure its role in adipose tissue function are limited. O2 is paramagnetic and, in principle, directly influences the magnetic resonance (MR) 1H longitudinal relaxation rate constant of lipids, R1; thus, we hypothesize that MR imaging (MRI) can directly measure adipose O2 via a simple measure of R1. METHODS: R1 was measured in a 4.7T preclinical MRI system at discrete oxygen partial pressure (pO2) levels. These measures were made in vitro in an idealized system and in vivo in subcutaneous and visceral white adipose of rodents. pO2 was determined using an invasive fiber-optic oxygen monitor. From the MRI and fiber optic data we determined the "relaxivity" of O2 in lipid, a critical parameter in converting the MRI-based R1 measurement into pO2. We used breathing gas challenge to estimate the changes in lipid pO2 (ΔpO2). RESULTS: The relaxivity of O2 in lipid was determined to be 1.7·10-3 ± 4·10-4 mmHg-1s-1 at 4.7T and 37 °C, and was consistent between in vitro and in vivo adipose tissue. There was a strong, significant correlation between MRI- and gold standard OxyLite-based measurements of lipid ΔpO2 for in vivo visceral and subcutaneous fat depots in rodents. CONCLUSION: This study lays the foundation for a direct, noninvasive measure of adipose pO2 using MRI and will allow for noninvasive measurement of O2 flux in adipose tissue. The proposed approach would be of particular importance in the interrogation of the pathogenesis of type 2 diabetes, where it has been suggested that adipose tissue hypoxia is an independent driver of insulin resistance pathway.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Tecnologia de Fibra Óptica , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Tecido Adiposo/metabolismo , Animais , Masculino , Imagens de Fantasmas , Ratos Sprague-Dawley
5.
J Physiol ; 596(3): 363-378, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29119565

RESUMO

Brown adipose tissue (BAT) is a recently rediscovered tissue in people that has shown promise as a potential therapeutic target against obesity and its metabolic abnormalities. Reliable non-invasive assessment of BAT volume and activity is critical to allow its importance in metabolic control to be evaluated. Positron emission tomography/computed tomography (PET/CT) in combination with 2-deoxy-2-[18 F]fluoroglucose administration is currently the most frequently used and most established method for the detection and quantification of activated BAT in humans. However, it involves radiation exposure and can detect activated (e.g. after cold exposure), but not quiescent, BAT. Several alternative methods that overcome some of these limitations have been developed including different PET approaches, single-photon emission imaging, CT, magnetic resonance based approaches, contrast-enhanced ultrasound, near infrared spectroscopy, and temperature assessment of fat depots containing brown adipocytes. The purpose of this review is to summarize and critically evaluate the currently available methods that non-invasively probe various aspects of BAT biology in order to assess BAT volume and/or metabolism. Although several of these methods show promise for the non-invasive assessment of BAT volume and function, further research is needed to optimize them to enable an accurate, reproducible and practical means for the assessment of human BAT content and its metabolic function.


Assuntos
Tecido Adiposo Marrom/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Doenças Metabólicas/diagnóstico por imagem , Obesidade/diagnóstico por imagem , Animais , Humanos
6.
Am J Physiol Renal Physiol ; 314(3): F399-F406, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092847

RESUMO

number is highly variable in humans and is thought to play an important role in renal health. Chronic kidney disease (CKD) is the result of too few nephrons to maintain homeostasis. Currently, nephron number can only be determined invasively or as a terminal assessment. Due to a lack of tools to measure and track nephron number in the living, the early stages of CKD often go unrecognized, preventing early intervention that might halt the progression of CKD. In this work, we present a technique to directly measure glomerular number ( Nglom) and volume in vivo in the rat kidney ( n = 8) using MRI enhanced with the novel contrast agent cationized ferritin (CFE-MRI). Adult male rats were administered intravenous cationized ferritin (CF) and imaged in vivo with MRI. Glomerular number was measured and each glomerulus was spatially mapped in 3D in the image. Mean apparent glomerular volume (a Vglom) and intrarenal distribution of the individual glomerular volume (IGV), were also measured. These metrics were compared between images of the same kidneys scanned in vivo and ex vivo with CFE-MRI. In vivo Nglom and a Vglom correlated to ex vivo metrics within the same kidneys and were within 10% of Nglom and a Vglom previously validated by stereologic methods. This is the first report of direct in vivo measurements of Nglom and a Vglom, introducing an opportunity to investigate mechanisms of renal disease progression and therapeutic response over time.


Assuntos
Nefropatias/diagnóstico por imagem , Glomérulos Renais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Ferritinas/administração & dosagem , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Nefropatias/patologia , Glomérulos Renais/patologia , Masculino , Valor Preditivo dos Testes , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Software
7.
Am J Physiol Heart Circ Physiol ; 315(1): H18-H32, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29498532

RESUMO

Increased vascular stiffness correlates with a higher risk of cardiovascular complications in aging adults. Elastin (ELN) insufficiency, as observed in patients with Williams-Beuren syndrome or with familial supravalvular aortic stenosis, also increases vascular stiffness and leads to arterial narrowing. We used Eln+/- mice to test the hypothesis that pathologically increased vascular stiffness with concomitant arterial narrowing leads to decreased blood flow to end organs such as the brain. We also hypothesized that drugs that remodel arteries and increase lumen diameter would improve flow. To test these hypotheses, we compared carotid blood flow using ultrasound and cerebral blood flow using MRI-based arterial spin labeling in wild-type (WT) and Eln+/- mice. We then studied how minoxidil, an ATP-sensitive K+ channel opener and vasodilator, affects vessel mechanics, blood flow, and gene expression. Both carotid and cerebral blood flows were lower in Eln+/- mice than in WT mice. Treatment of Eln+/- mice with minoxidil lowered blood pressure and reduced functional arterial stiffness to WT levels. Minoxidil also improved arterial diameter and restored carotid and cerebral blood flows in Eln+/- mice. The beneficial effects persisted for weeks after drug removal. RNA-Seq analysis revealed differential expression of 127 extracellular matrix-related genes among the treatment groups. These results indicate that ELN insufficiency impairs end-organ perfusion, which may contribute to the increased cardiovascular risk. Minoxidil, despite lowering blood pressure, improves end-organ perfusion. Changes in matrix gene expression and persistence of treatment effects after drug withdrawal suggest arterial remodeling. Such remodeling may benefit patients with genetic or age-dependent ELN insufficiency. NEW & NOTEWORTHY Our work with a model of chronic vascular stiffness, the elastin ( Eln)+/- mouse, shows reduced brain perfusion as measured by carotid ultrasound and MRI arterial spin labeling. Vessel caliber, functional stiffness, and blood flow improved with minoxidil. The ATP-sensitive K+ channel opener increased Eln gene expression and altered 126 other matrix-associated genes.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Minoxidil/farmacologia , Rigidez Vascular/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/metabolismo , Artérias Cerebrais/fisiologia , Elastina/genética , Elastina/metabolismo , Matriz Extracelular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
8.
Appl Magn Reson ; 49(1): 3-24, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29713112

RESUMO

Recently, a number of MRI protocols have been reported that seek to exploit the effect of dissolved oxygen (O2, paramagnetic) on the longitudinal 1H relaxation of tissue water, thus providing image contrast related to tissue oxygen content. However, tissue water relaxation is dependent on a number of mechanisms, and this raises the issue of how best to model the relaxation data. This problem, the model selection problem, occurs in many branches of science and is optimally addressed by Bayesian probability theory. High signal-to-noise, densely sampled, longitudinal 1H relaxation data were acquired from rat brain in vivo and from a cross-linked bovine serum albumin (xBSA) phantom, a sample that recapitulates the relaxation characteristics of tissue water in vivo. Bayesian-based model selection was applied to a cohort of five competing relaxation models: (i) monoexponential, (ii) stretched-exponential, (iii) biexponential, (iv) Gaussian (normal) R1-distribution, and (v) gamma R1-distribution. Bayesian joint analysis of multiple replicate datasets revealed that water relaxation of both the xBSA phantom and in vivo rat brain was best described by a biexponential model, while xBSA relaxation datasets truncated to remove evidence of the fast relaxation component were best modeled as a stretched exponential. In all cases, estimated model parameters were compared to the commonly used monoexponential model. Reducing the sampling density of the relaxation data and adding Gaussian-distributed noise served to simulate cases in which the data are acquisition-time or signal-to-noise restricted, respectively. As expected, reducing either the number of data points or the signal-to-noise increases the uncertainty in estimated parameters and, ultimately, reduces support for more complex relaxation models.

9.
J Neurooncol ; 133(1): 9-16, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28425047

RESUMO

Anti-vascular endothelial growth factor (anti-VEGF) antibodies are a promising new treatment for late time-to-onset radiation-induced necrosis (RN). We sought to evaluate and validate the response to anti-VEGF antibody in a mouse model of RN. Mice were irradiated with the Leksell Gamma Knife Perfexion™ and then treated with anti-VEGF antibody, beginning at post-irradiation (PIR) week 8. RN progression was monitored via anatomic and diffusion MRI from weeks 4-12 PIR. Standard histology, using haematoxylin and eosin (H&E), and immunohistochemistry staining were used to validate the response to treatment. After treatment, both post-contrast T1-weighted and T2-weighted image-derived lesion volumes decreased (P < 0.001), while the lesion volumes for the control group increased. The abnormally high apparent diffusion coefficient (ADC) for RN also returned to the ADC range for normal brain following treatment (P < 0.001). However, typical RN pathology was still present histologically. Large areas of focal calcification were observed in ~50% of treated mouse brains. Additionally, VEGF and hypoxia-inducible factor 1-alpha (HIF-1α) were continually upregulated in both the anti-VEGF and control groups. Despite improvements observed radiographically following anti-VEGF treatment, lesions were not completely resolved histologically. The subsequent calcification and the continued upregulation of VEGF and HIF-1α merit further preclinical/clinical investigation.


Assuntos
Anticorpos Monoclonais/farmacologia , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Radiocirurgia , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos da radiação , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Calcinose/diagnóstico por imagem , Calcinose/tratamento farmacológico , Calcinose/etiologia , Calcinose/patologia , Progressão da Doença , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Necrose/diagnóstico por imagem , Necrose/tratamento farmacológico , Necrose/etiologia , Necrose/patologia , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/patologia , Distribuição Aleatória , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
10.
Kidney Int ; 89(2): 498-505, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26535998

RESUMO

Reduced nephron mass is strongly linked to susceptibility to chronic renal and cardiovascular diseases. There are currently no tools to identify nephropenia in clinical or preclinical diagnostics. Such new methods could uncover novel mechanisms and therapies for chronic kidney disease (CKD) and reveal how variation among traits can affect renal function and morphology. Here we used cationized ferritin (CF)­enhanced MRI (CFE-MRI) to investigate the relationship between glomerular number (Nglom) and volume (Vglom) in kidneys of healthy wild-type mice and mice with oligosyndactylism (Os/+), a model of congenital nephron reduction. Mice were injected with CF and perfused, and the resected kidneys were imaged with 7T MRI to detect CF-labeled glomeruli. CFE-MRI was used to measure the intrarenal distribution of individual glomerular volumes and revealed two major populations of glomeruli distinguished by size. Spatial mapping revealed that the largest glomeruli were located in the juxtamedullary region in both wild-type and Os/+ mice and the smallest population located in the cortex. Os/+ mice had about a 50% reduction and 35% increase of Nglom and Vglom, respectively, in both glomerular populations compared with wild type, consistent with glomerular hypertrophy in the Os/+ mice. Thus, we provide a foundation for whole-kidney, MRI-based phenotyping of mouse renal glomerular morphology and provide new potential for quantitative human renal diagnostics.


Assuntos
Modelos Animais de Doenças , Rim/anormalidades , Imageamento por Ressonância Magnética/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Magn Reson Med ; 75(6): 2442-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26175346

RESUMO

PURPOSE: The goal of this study was to quantify the relationship between the (1) H longitudinal relaxation rate constant, R1 , and oxygen (O2 ) concentration (relaxivity, r1 ) in tissue and to quantify O2 -driven changes in R1 (ΔR1 ) during a breathing gas challenge in normal brain, radiation-induced lesions, and tumor lesions. METHODS: R1 data were collected in control-state mice (n = 4) during three different breathing gas (and thus tissue O2 ) conditions. In parallel experiments, pO2 was measured in the thalamus of control-state mice (n = 4) under the same breathing gas conditions using an O2 -sensitive microprobe. The relaxivity of tissue O2 was calculated using the R1 and pO2 data. R1 data were collected in control-state (n = 4) mice, a glioma model (n = 7), and a radiation necrosis model (n = 6) during two breathing gas (thus tissue O2 ) conditions. R1 and ΔR1 were calculated for each cohort. RESULTS: O2 r1 in the brain was 9 × 10(-4) ± 3 × 10(-4) mm Hg(-1) · s(-1) at 4.7T. R1 and ΔR1 measurements distinguished radiation necrosis from tumor (P< 0.03 and P< 0.01, respectively). CONCLUSION: The relaxivity of O2 in the brain is determined. R1 and ΔR1 measurements differentiate tumor lesions from radiation necrosis lesions in the mouse models. These pathologies are difficult to distinguish by traditional imaging techniques; O2 -driven changes in R1 holds promise in this regard. Magn Reson Med 75:2442-2447, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Necrose/diagnóstico por imagem , Oxigênio/análise , Lesões por Radiação/diagnóstico por imagem , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Necrose/metabolismo , Oxigênio/metabolismo , Lesões por Radiação/metabolismo
12.
Nanomedicine ; 12(6): 1735-45, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27071333

RESUMO

Ferritin is a naturally occurring iron storage protein, proposed as a clinically relevant nanoparticle with applications as a diagnostic and therapeutic agent. Cationic ferritin is a targeted, injectable contrast agent to measure kidney microstructure with MRI. Here, the toxicity of horse spleen ferritin is assessed as a step to clinical translation. Adult male mice received cationic, native and high dose cationic ferritin (CF, NF, or HDCF) or saline and were monitored for 3weeks. Transient weight loss occurred in the ferritin groups with no difference in renal function parameters. Ferritin-injected mice demonstrated a lower serum iron 3weeks after administration. In ferritin-injected animals pre-treated with hydrocortisone, there were no structural or weight differences in the kidneys, liver, lung, heart, or spleen. This study demonstrates a lack of significant detrimental effects of horse-derived ferritin-based nanoparticles at MRI-detectable doses, allowing further exploration of these agents in basic research and clinical diagnostics.


Assuntos
Meios de Contraste , Ferritinas , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Animais , Cavalos , Ferro , Fígado , Masculino , Camundongos
13.
Am J Physiol Renal Physiol ; 306(11): F1381-90, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24647716

RESUMO

Nephron number (N(glom)) and size (V(glom)) are correlated with risk for chronic cardiovascular and kidney disease and may be predictive of renal allograft viability. Unfortunately, there are no techniques to assess N(glom) and V(glom) in intact kidneys. This work demonstrates the use of cationized ferritin (CF) as a magnetic resonance imaging (MRI) contrast agent to measure N(glom) and V(glom) in viable human kidneys donated to science. The kidneys were obtained from patients with varying levels of cardiovascular and renal disease. CF was intravenously injected into three viable human kidneys. A fourth control kidney was perfused with saline. After fixation, immunofluorescence and electron microscopy confirmed binding of CF to the glomerulus. The intact kidneys were imaged with three-dimensional MRI and CF-labeled glomeruli appeared as punctate spots. Custom software identified, counted, and measured the apparent volumes of CF-labeled glomeruli, with an ~6% false positive rate. These measurements were comparable to stereological estimates. The MRI-based technique yielded a novel whole kidney distribution of glomerular volumes. Histopathology demonstrated that the distribution of CF-labeled glomeruli may be predictive of glomerular and vascular disease. Variations in CF distribution were quantified using image texture analyses, which be a useful marker of glomerular sclerosis. This is the first report of direct measurement of glomerular number and volume in intact human kidneys.


Assuntos
Nefropatias/patologia , Glomérulos Renais/patologia , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Pediatr Nephrol ; 29(4): 575-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24022365

RESUMO

The total number of glomeruli (nephrons) in a kidney is an important microanatomical parameter for at least three reasons: it provides an index of the success/extent of nephrogenesis and can thereby provide insights into the roles of specific genes and feto-maternal environmental factors in nephrogenesis; low nephron number has been linked to an increased risk of cardiovascular and renal disease in adulthood; and knowledge of quantitative kidney microanatomy can illuminate our understanding of physiological mechanisms in health and disease. A range of methods has been used to count glomeruli in kidneys over the past 100 years, with design-based stereology (the physical disector/fractionator combination) considered the gold standard. However, this approach is labor-intensive and expensive, and therefore is not utilized by most laboratories. A new method for counting and sizing every glomerulus in the kidney has recently been described. This method involves in vivo labeling of glomeruli with cationic ferritin, and then magnetic resonance imaging (MRI) of the ex vivo kidney. Values are obtained in one sixth of the time of disector-based approaches. This new MRI method holds great promise for studies of glomerular number and size ex vivo and in vivo.


Assuntos
Contagem de Células/métodos , Néfrons/citologia , Animais , Humanos
15.
Am J Physiol Renal Physiol ; 304(10): F1252-7, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23515719

RESUMO

Techniques to measure morphological parameters, such as glomerular (and thereby nephron) number, glomerular size, and kidney volume, have been vital to understanding factors contributing to chronic kidney disease (CKD). These techniques have also been important to understanding the associations between CKD and other systemic and cardiovascular diseases and have led to the identification of developmental risk factors for these pathologies. However, existing techniques in quantitative kidney morphology are resource- and time-consuming and are destructive to the organ. This review discusses the emerging generation of techniques to study kidney morphology quantitatively using magnetic resonance imaging (MRI) using the intravenous injection of the superparamagnetic nanoparticle cationic ferritin, which binds to the glomerular basement membrane. A primary advantage of MRI over previously established techniques is the ability to quantify morphology in the intact organ with minimal sample preparation. We highlight areas of research where MRI-based morphological measurements will be helpful in animal models and possibly diagnostic clinical nephrology, discuss technical challenges in light of the progress in MRI techniques to date, and identify novel measurements that may be possible using MRI, both ex vivo and in vivo.


Assuntos
Nefropatias/diagnóstico , Glomérulos Renais/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Taxa de Filtração Glomerular , Humanos , Nefropatias/patologia , Glomérulos Renais/patologia , Tamanho do Órgão
16.
Magn Reson Med ; 69(3): 853-61, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22570266

RESUMO

The goal of the work was to establish the toxicity and biodistribution of the superparamagnetic protein cationized ferritin (CF) after intravenous injection. Intravenously injected CF has been used to target the extracellular matrix with high specificity in the kidney glomerulus, allowing measurements of individual glomeruli using T2*-weighted MRI. For the routine use of CF as an extracellular matrix-specific tracer, it is important to determine whether CF is toxic. In this work, we investigated the renal and hepatic toxicity, leukocyte count, and clearance of intravenously injected CF. Furthermore, we studied CF labeling in several organs using MRI and immunohistochemistry. Serum measurements of biomarkers suggest that intravenous injection of CF is neither nephrotoxic nor hepatotoxic and does not increase leukocyte counts in healthy rats at a dose of 5.75 mg/100 g. In addition to known glomerular labeling, confocal and MRI suggest that intravenously injected CF labels the extracellular matrix of the hepatic sinusoid, extracellular glycocalyx of alveolar endothelial cells, and macrophages in the spleen. Liver T2* values suggest that CF is cleared by 7 days after injection. These results suggest that CF may serve as a useful contrast agent for detection of a number of structures and functions with minimal toxicity.


Assuntos
Ferritinas/farmacocinética , Ferritinas/toxicidade , Imageamento por Ressonância Magnética/métodos , Animais , Cátions , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Meios de Contraste/toxicidade , Ferritinas/administração & dosagem , Injeções Intravenosas , Masculino , Taxa de Depuração Metabólica , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
17.
Magn Reson Med ; 70(6): 1728-38, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23390010

RESUMO

PURPOSE: The goal of this work was to detect disease-related microstructural changes to the liver using magnetic resonance imaging. Chronic liver disease can cause microstructural changes in the liver that reduce plasma access to the perisinusoidal space--the site of exchange between the blood plasma and the hepatic parenchyma. The reduced plasma access to the perisinusoidal space inhibits hepatic function and contributes to the ∼30,000 chronic liver disease-related deaths per year. METHODS: The extracellular matrix-specific cationized ferritin magnetic resonance imaging probe was injected intravenously into healthy rats and a rat model of the chronic liver disease non-alcoholic steatohepatitis. Rats were subsequently imaged with T2*-weighted magnetic resonance imaging. RESULTS: This work demonstrates that the binding of cationized ferritin to the perisinusoidal extracellular matrix is reduced by 55% in a rat model of non-alcoholic steatohepatitis compared to healthy controls. This reduced binding is detectable in vivo with magnetic resonance imaging. Immunofluorescence and electron microscopy indicated that the reduced binding is due to inhibited macromolecular access to the perisinusoidal space caused by non-alcoholic steatohepatitis-related microstructural changes. CONCLUSIONS: The reduced accumulation of intravenously injected cationized ferritin may report on changes in macromolecular access to the liver parenchyma in chronic liver disease.


Assuntos
Matriz Extracelular/patologia , Ferritinas , Aumento da Imagem/métodos , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Cátions , Meios de Contraste , Masculino , Técnicas de Sonda Molecular , Sondas Moleculares , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Nat Commun ; 14(1): 6066, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770427

RESUMO

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
19.
PLoS One ; 17(9): e0274955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137126

RESUMO

Skill retention is important for motor rehabilitation outcomes. Recent work has demonstrated that delayed visuospatial memory performance may predict motor skill retention in older and neuropathological populations. White matter integrity between parietal and frontal cortices may explain variance in upper-extremity motor learning tasks and visuospatial processes. We performed a whole-brain analysis to determine the white matter correlates of delayed visuospatial memory and one-week motor skill retention in nondemented older adults. We hypothesized that better frontoparietal tract integrity would be positively related to better behavioral performance. Nineteen participants (age>58) completed diffusion-weighted imaging, then a clinical test of delayed visuospatial memory and 50 training trials of an upper-extremity motor task; participants were retested on the motor task one week later. Principal component analysis was used to create a composite score for each participant's behavioral data, i.e. shared variance between delayed visuospatial memory and motor skill retention, which was then entered into a voxel-based regression analysis. Behavioral results demonstrated that participants learned and retained their skill level after a week of no practice, and their delayed visuospatial memory score was positively related to the extent of skill retention. Consistent with previous work, neuroimaging results indicated that regions within bilateral anterior thalamic radiations, corticospinal tracts, and superior longitudinal fasciculi were related to better delayed visuospatial memory and skill retention. Results of this study suggest that the simple act of testing for specific cognitive impairments prior to therapy may identify older adults who will receive little to no benefit from the motor rehabilitation regimen, and that these neural regions may be potential targets for therapeutic intervention.


Assuntos
Substância Branca , Idoso , Encéfalo , Imagem de Tensor de Difusão/métodos , Humanos , Aprendizagem , Pessoa de Meia-Idade , Destreza Motora , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
20.
Am J Physiol Renal Physiol ; 300(6): F1454-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21411479

RESUMO

The goal of this work was to nondestructively measure glomerular (and thereby nephron) number in the whole kidney. Variations in the number and size of glomeruli have been linked to many renal and systemic diseases. Here, we develop a robust magnetic resonance imaging (MRI) technique based on injection of cationic ferritin (CF) to produce an accurate measurement of number and size of individual glomeruli. High-field (19 Tesla) gradient-echo MR images of perfused rat kidneys after in vivo intravenous injection of CF showed specific labeling of individual glomeruli with CF throughout the kidney. We developed a three-dimensional image-processing algorithm to count every labeled glomerulus. MRI-based counts yielded 33,786 ± 3,753 labeled glomeruli (n = 5 kidneys). Acid maceration counting of contralateral kidneys yielded an estimate of 30,585 ± 2,053 glomeruli (n = 6 kidneys). Disector/fractionator stereology counting yielded an estimate of 34,963 glomeruli (n = 2). MRI-based measurement of apparent glomerular volume of labeled glomeruli was 4.89 × 10(-4) mm(3) (n = 5) compared with the average stereological measurement of 4.99 × 10(-4) mm(3) (n = 2). The MRI-based technique also yielded the intrarenal distribution of apparent glomerular volume, a measurement previously unobtainable in histology. This work makes it possible to nondestructively measure whole-kidney glomerular number and apparent glomerular volumes to study susceptibility to renal diseases and opens the door to similar in vivo measurements in animals and humans.


Assuntos
Nefropatias/patologia , Glomérulos Renais/patologia , Néfrons/patologia , Animais , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA