Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(19): 7351-7357, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33724793

RESUMO

Electrochromic coatings are promising for applications in smart windows or energy-efficient optical displays. However, classical inorganic electrochromic materials such as WO3 suffer from low coloration efficiency and slow switching speed. We have developed highly efficient and fast-switching electrochromic thin films based on fully organic, porous covalent organic frameworks (COFs). The low band gap COFs have strong vis-NIR absorption bands in the neutral state, which shift significantly upon electrochemical oxidation. Fully reversible absorption changes by close to 3 OD can be triggered at low operating voltages and low charge per unit area. Our champion material reaches an electrochromic coloration efficiency of 858 cm2 C-1 at 880 nm and retains >95% of its electrochromic response over 100 oxidation/reduction cycles. Furthermore, the electrochromic switching is extremely fast with response times below 0.4 s for the oxidation and around 0.2 s for the reduction, outperforming previous COFs by at least an order of magnitude and rendering these materials some of the fastest-switching frameworks to date. This combination of high coloration efficiency and very fast switching reveals intriguing opportunities for applications of porous organic electrochromic materials.

2.
Front Robot AI ; 11: 1328934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495302

RESUMO

One of the big challenges in robotics is the generalization necessary for performing unknown tasks in unknown environments on unknown objects. For us humans, this challenge is simplified by the commonsense knowledge we can access. For cognitive robotics, representing and acquiring commonsense knowledge is a relevant problem, so we perform a systematic literature review to investigate the current state of commonsense knowledge exploitation in cognitive robotics. For this review, we combine a keyword search on six search engines with a snowballing search on six related reviews, resulting in 2,048 distinct publications. After applying pre-defined inclusion and exclusion criteria, we analyse the remaining 52 publications. Our focus lies on the use cases and domains for which commonsense knowledge is employed, the commonsense aspects that are considered, the datasets/resources used as sources for commonsense knowledge and the methods for evaluating these approaches. Additionally, we discovered a divide in terminology between research from the knowledge representation and reasoning and the cognitive robotics community. This divide is investigated by looking at the extensive review performed by Zech et al. (The International Journal of Robotics Research, 2019, 38, 518-562), with whom we have no overlapping publications despite the similar goals.

3.
Top Cogn Sci ; 14(2): 344-362, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34459566

RESUMO

We examine the mechanisms required to handle everyday activities from the standpoint of cognitive robotics, distinguishing activities on the basis of complexity and transparency. Task complexity (simple or complex) reflects the intrinsic nature of a task, while task transparency (easy or difficult) reflects an agent's ability to identify a solution strategy in a given task. We show how the CRAM cognitive architecture allows a robot to carry out simple and complex activities such as laying a table for a meal and loading a dishwasher afterward. It achieves this by using generalized action plans that exploit reasoning with modular, composable knowledge chunks representing general knowledge to transform underdetermined everyday action requests into motion plans that successfully accomplish the required task. Noting that CRAM does not yet have the ability to deal with difficult activities, we leverage insights from the situation model perspective on the cognitive mechanisms underlying flexible context-sensitive behavior with a view to extending CRAM to overcome this deficit.


Assuntos
Robótica , Cognição , Humanos
4.
Nanoscale ; 12(14): 7766-7775, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32215409

RESUMO

The efficiency of photoelectrochemical tandem cells is still limited by the availability of stable low band gap electrodes. In this work, we report a photocathode based on lithium doped copper(ii) oxide, a black p-type semiconductor. Density functional theory calculations with a Hubbard U term show that low concentrations of Li (Li0.03Cu0.97O) lead to an upward shift of the valence band maximum that crosses the Fermi level and results in a p-type semiconductor. Therefore, Li doping emerged as a suitable approach to manipulate the electronic structure of copper oxide based photocathodes. As this material class suffers from instability in water under operating conditions, the recorded photocurrents are repeatedly misinterpreted as hydrogen evolution evidence. We investigated the photocorrosion behavior of LixCu1-xO cathodes in detail and give the first mechanistic study of the fundamental physical process. The reduced copper oxide species were localized by electron energy loss spectroscopy mapping. Cu2O grows as distinct crystallites on the surface of LixCu1-xO instead of forming a dense layer. Additionally, there is no obvious Cu2O gradient inside the films, as Cu2O seems to form on all LixCu1-xO nanocrystals exposed to water. The application of a thin Ti0.8Nb0.2Ox coating by atomic layer deposition and the deposition of a platinum co-catalyst increased the stability of LixCu1-xO against decomposition. These devices showed a stable hydrogen evolution for 15 minutes.

5.
Nanoscale ; 11(6): 2946-2958, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30693922

RESUMO

Gold nanostars are one of the most fascinating anisotropic nanoparticles. The morphology of a nanostar can be controlled by changing various synthetic parameters; however, the detailed growth mechanism is still not fully understood. Herein, we investigate this process in six-branched nanostars, focusing first on the properties of a single crystalline seed, which evolves to include penta-twinned defects as the gateway to anisotropic growth into the 6-branched morphology. In particular, we report on a high-yield seed-mediated protocol for the synthesis of these particles with high dimensional monodispersity in the presence of Triton-X, ascorbic acid, and AgNO3. Detailed spectroscopic and microscopic analyses have allowed the identification of several key intermediates in the growth process, revealing that it proceeds via penta-twinned intermediate seeds. Importantly, we report the first experimental evidence tracking the location of silver with sub-nanometer resolution and prove its role as a stabilizing agent in these highly branched nanostructures. Our results indicate that metallic silver on the spikes stabilizes the nanostar morphology and the remaining silver, present when AgNO3 is added at a high concentration, deposits on the core and between the bases of neighboring spikes. Importantly, we also demonstrate the possibility of achieving dimensional monodispersity, reproducibility, and tunability in colloidal gold nanostars that are substantially higher than those previously reported, which could be leveraged to carry out holistic computational-experimental studies to understand, predict, and tailor their plasmonic response.

6.
Sci Robot ; 4(26)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33137756

RESUMO

Reasoning about the meanings of human activities is a powerful way for robots to learn from humans.

7.
Nanoscale ; 11(30): 14285-14293, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31317996

RESUMO

We present a novel route for the preparation of supported IrO2 catalysts for the oxygen evolution reaction in proton exchange membrane electrolyzers. It uses carbon soot as a nanostructure template, which is sequentially coated with a conductive niobium-doped titanium oxide (NTO) layer and an ultrathin, highly pure IrO2 catalyst layer by atomic layer deposition (ALD). The NTO acts as an oxidation-stable conductor between the metal current distributor and the catalyst. The highly controlled film growth by ALD enables the fabrication of electrodes with a very low noble metal loading. Nonetheless, these electrodes exhibit very high catalytic activity and good stability under cyclic and constant load conditions. At an IrO2 content of less than 10 percent by mass of the oxide material and an area-based Ir content of 153 µg cm-2, the nanostructured NTO/IrO2 electrode achieves an oxygen evolution current density of 1 mA cm-2 at an overpotential of ∼250 mV, which is significantly lower than the reported values for particulate NTO/IrO2 catalysts.

8.
Nanoscale ; 11(40): 18662-18671, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31584591

RESUMO

Gold nanostars display exceptional field enhancement properties and tunable resonant modes that can be leveraged to create effective imaging tags, phototherapeutic agents, and hot electron-based photocatalytic platforms. Despite having emerged as the cornerstone among plasmonic nanoparticles with respect to resonant strength and tunability, some well-known limitations have hampered their technological implementation. Herein we tackle these recognized intrinsic weaknesses, which stem from the complex, and thus computationally untreatable morphology and the limited sample monodispersity, by proposing a novel 6-spike nanostar, which we have computationally studied and synthetically realized, as the epitome of 3D plasmonic nanoantenna with wide range plasmonic tunability. Our concerted computational and experimental effort shows that these nanostars combine the unique advantages of nanostructures fabricated from the top-down and those synthesized from the bottom-up, showcasing a unique plasmonic response that remains largely unaltered on going from the single particle to the ensemble. Furthermore, they display multiple, well-separated, narrow resonances, the most intense of which extends in space much farther than that observed before for any plasmonic mode localized around a colloidal nanostructure. Importantly, the unique close correlation between morphology and plasmonic response leads the resonant modes of these particles to be tunable between 600 and 2000 nm, a unique feature that could find relevance in cutting edge technological applications.

9.
Nat Commun ; 9(1): 3802, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228278

RESUMO

Covalent organic frameworks (COFs) are an emerging class of highly tuneable crystalline, porous materials. Here we report the first COFs that change their electronic structure reversibly depending on the surrounding atmosphere. These COFs can act as solid-state supramolecular solvatochromic sensors that show a strong colour change when exposed to humidity or solvent vapours, dependent on vapour concentration and solvent polarity. The excellent accessibility of the pores in vertically oriented films results in ultrafast response times below 200 ms, outperforming commercially available humidity sensors by more than an order of magnitude. Employing a solvatochromic COF film as a vapour-sensitive light filter, we demonstrate a fast humidity sensor with full reversibility and stability over at least 4000 cycles. Considering their immense chemical diversity and modular design, COFs with fine-tuned solvatochromic properties could broaden the range of possible applications for these materials in sensing and optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA