RESUMO
We report the independent role of isomerism of secondary sphere substituents over their nature, a factor often overlooked in molecular electrocatalysis pertaining to electrochemical sensing, by establishing that isomerism redefines the electronic structure at the catalytic reaction center via geometrical factors. UV-vis spectroscopy and X-ray photoelectron spectroscopy suggest that a substituent's isomerism in molecular catalysts conjoins molecular planarity and catalytic activation through competing field effects and resonance effects. As a classical example, we demonstrate the influence of isomerism of the -NO2 substituents for the electrocatalytic multi electron oxidation of As(III), a potentially important electrochemical pathway for water remediation and arsenic detection. The isomerism dependent oxidative activation of catalytic center leads to a nonprecious molecular catalyst capable for direct As(III) oxidation with an experimental detection limit close to WHO guidelines. This work opens up an unusual approach in analytical chemistry for developing various sensing platforms for challenging chemical and electrochemical reactions.
Assuntos
Arsênio/análise , Cobalto/química , Técnicas Eletroquímicas , Dióxido de Nitrogênio/química , Compostos Organometálicos/química , Catálise , Elétrons , Isomerismo , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de SuperfícieRESUMO
A large amount of wastewater is typically discharged into water bodies and has extremely harmful effects to aquatic environments. The removal of heavy metals from water bodies is necessary for the safe consumption of water and human activities. The demand for seafood has considerably increased, and millions of tons of crustacean waste are discarded every year. These waste products are rich in a natural biopolymer known as chitin. The deacetylated form of chitin, chitosan, has attracted attention as an adsorbent. It is a biocompatible and biodegradable polymer that can be modified and converted to various derivatives. This review paper focuses on relevant literature on strategies for chemically modifying the biopolymer and its use in the removal of heavy metals from water and wastewater. The different aspects of chitosan-based derivatives and their preparation and application are elucidated. A list of chitosan-based composites, along with their adsorptivity and experimental conditions, are compiled.
RESUMO
The role of electrocatalysts in energy storage/conversion, biomedical and environmental sectors, green chemistry, and much more has generated enormous interest in comprehending their structure-activity relations. While targeting the surface-to-volume ratio, exposing reactive crystal planes and interfacial modifications are time-tested considerations for activating metallic catalysts; it is primarily by substitution in molecular electrocatalysts. This account draws the distinction between a substituent's chemical identity and isomerism, when regioisomerism of the -NO2 substituent is conferred at the "α" and "ß" positions on the macrocycle of cobalt phthalocyanines. Spectroscopic analysis and theoretical calculations establish that the ß isomer accumulates catalytically active intermediates via a cumulative influence of inductive and resonance effects. However, the field effect in the α isomer restricts this activation due to a vanishing resonance effect. The demonstration of the distinct role of isomerism in substituted molecular electrocatalysts for reactions ranging from energy conversion to biosensing highlights that isomerism of the substituents makes an independent contribution to electrocatalysis over its chemical identity.