Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341712

RESUMO

Traditionally, physical models of associative memory assume conditions of equilibrium. Here, we consider a prototypical oscillator model of associative memory and study how active noise sources that drive the system out of equilibrium, as well as nonlinearities in the interactions between the oscillators, affect the associative memory properties of the system. Our simulations show that pattern retrieval under active noise is more robust to the number of learned patterns and noise intensity than under passive noise. To understand this phenomenon, we analytically derive an effective energy correction due to the temporal correlations of active noise in the limit of short correlation decay time. We find that active noise deepens the energy wells corresponding to the patterns by strengthening the oscillator couplings, where the more nonlinear interactions are preferentially enhanced. Using replica theory, we demonstrate qualitative agreement between this effective picture and the retrieval simulations. Our work suggests that the nonlinearity in the oscillator couplings can improve memory under nonequilibrium conditions.

2.
J Am Chem Soc ; 145(44): 24089-24097, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37876220

RESUMO

We report the synthesis of a series of pseudo-1D coordination polymer (CP) materials with the formula FeyCo1-yBTT (BTT = 1,3,5-benzenetrithiolate). These materials were structurally characterized by PXRD Rietveld, EXAFS, and PDF analyses, revealing that the CP superstructure enables a continuous and isomorphous alloy between the two homometallic compounds. Lower Fe loadings exhibit emergent spin glass magnetic behavior, such as memory effects and composition-dependent spin glass response time constants ranging from 6.9 × 10-9 s to 1.8 × 10-6 s. These data are consistent with the formation of spin clusters within the lattice. The magnetic behavior in these materials was modeled via replica exchange Monte Carlo simulation, which provides a good match for the experimentally measured spin glassing and magnetic phase transitions. These findings underscore how the rigid superstructure of CP and MOF scaffolds can enable the systematic tuning of physical properties, such as the spin glass behavior described here.

3.
J Phys Chem B ; 125(40): 11179-11187, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34609867

RESUMO

Biochemical circadian rhythm oscillations play an important role in many signaling mechanisms. In this work, we explore some of the biophysical mechanisms responsible for sustaining robust oscillations by constructing a minimal but analytically tractable model of the circadian oscillations in the KaiABC protein system found in the cyanobacteria S. elongatus. In particular, our minimal model explicitly accounts for two experimentally characterized biophysical features of the KaiABC protein system, namely, a differential binding affinity and an ultrasensitive response. Our analytical work shows how these mechanisms might be crucial for promoting robust oscillations even in suboptimal nutrient conditions. Our analytical and numerical work also identifies mechanisms by which biological clocks can stably maintain a constant time period under a variety of nutrient conditions. Finally, our work also explores the thermodynamic costs associated with the generation of robust sustained oscillations and shows that the net rate of entropy production alone might not be a good figure of merit to asses the quality of oscillations.


Assuntos
Relógios Biológicos , Cianobactérias , Ritmo Circadiano , Modelos Biológicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA