Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2307547, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030567

RESUMO

Interfaces in perovskite solar cells (PSCs) play a pivotal role in determining device performance by influencing charge transport and recombination. Understanding the physical processes at these interfaces is essential for achieving high-power conversion efficiency in PSCs. Particularly, the interfaces involving oxide-based transport layers are susceptible to defects like dangling bonds, excess oxygen, or oxygen deficiency. To address this issue, the surface of NiOx is passivated using octadecylphosphonic acid (ODPA), resulting in improved charge transport across the perovskite hole transport layer (HTL) interface. This surface treatment has led to the development of hysteresis-free devices with an impressive ≈13% increase in power conversion efficiency. Computational studies have explored the halide perovskite architecture of ODPA-treated HTL/Perovskite, aiming to unlock superior photovoltaic performance. The ODPA surface functionalization has demonstrated enhanced device performance, characterized by superior charge exchange capacity. Moreover, higher band-to-band recombination in photoluminescence and electroluminescence indicates presence of lower mid-gap energy states, thereby increasing the effective photogenerated carrier density. These findings are expected to promote the utilization of various phosphonic acid-based self-assembly monolayers for surface passivation of oxide-based transport layers in perovskite solar cells. Ultimately, this research contributes to the realization of efficient halide PSCs by harnessing the favorable architecture of NiOx interfaces.

2.
Energy Fuels ; 37(23): 17836-17862, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38094910

RESUMO

Electrochemical energy storage technology has emerged as one of the most viable solutions to tackle the challenge of fossil-fuel-based technology and associated global pollution. Supercapacitors are widely used for high-power applications, and there is tremendous ongoing effort to make them useful for high-energy storage applications. While electrode materials of supercapacitors play a central role in charge storage performance, insights into the contribution from different charge storage mechanisms are crucial from both fundamental and applied aspects. In this context, apart from the electric double layer and fast redox reaction at/near the surface, another pronounced contribution from the electrode is quantum capacitance (CQ). Here, the origin of CQ, how it contributes to the total capacitance, the possible strategies to improve it, and the state-of-art CQ of electrode materials, including carbon, two-dimensional materials, and their composites, are discussed. Although most of the studies on quantifying CQ are theoretical, some case studies on experimental measurements using standard electrochemical techniques are summarized. With an overview and critical analysis of theoretical studies on quantum capacitance of electrode materials, this review critically examines the supercapacitor design strategies, including choosing the right materials and electrolytes. These insights are also relevant to other types of clean energy storage technologies, including metal-ion capacitors and batteries.

3.
Chemosphere ; 345: 140465, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866494

RESUMO

The present investigation reports a comprehensible and responsive strategy for identifying atrazine in several conditions using an extensive electrochemical method. CdS Quantum dots were synthesized via a greener approach, and their formation was endorsed by numerous characterization techniques such as FTIR, SEM, Raman, UV-Vis, and XRD. Owing to the splendid electrocatalytic behavior, Green CdS quantum dots (QDs) of crystallite size ∼2 nm was opted as the sensor material and were, therefore, incorporated on the bare carbon paste electrode's surface. The developed sensor demonstrated an impressive outcome for atrazine sensing accompanied by superior selectivity and sensitivity. The lower detection limit (LLOD) of 0.53 µM was attained using the developed sensor in a linear concentration range of 10-100 µM. Furthermore, the practical pertinence of the developed sensor was examined on distilled water, wastewater, and fresh liquid milk, resulting in a tremendous retrieval of atrazine (91.33-99.8%).


Assuntos
Atrazina , Água Potável , Pontos Quânticos , Pontos Quânticos/química , Atrazina/análise , Técnicas Eletroquímicas , Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA