Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 156(13): 134901, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395903

RESUMO

The key parameter controlling the glass transition of colloidal suspensions is φ, the fraction of the sample volume occupied by the particles. Unfortunately, changing φ by varying an external parameter, e.g., temperature T as in molecular glass formers, is not possible, unless one uses thermosensitive colloidal particles, such as the popular poly(N-isopropylacrylamide) (PNiPAM) microgels. These, however, have several drawbacks, including high deformability, osmotic deswelling, and interpenetration, which complicate their use as a model system to study the colloidal glass transition. Here, we propose a new system consisting of a colloidal suspension of non-deformable spherical silica nanoparticles, in which PNiPAM hydrogel spheres of ∼100-200µm size are suspended. These non-colloidal "mesogels" allow for controlling the sample volume effectively available to the silica nanoparticles and hence their φ, thanks to the T-induced change in mesogels' volume. Using optical microscopy, we first show that the mesogels retain their ability to change size with T when suspended in Ludox suspensions, similarly as in water. We then show that their size is independent of the sample thermal history such that a well-defined, reversible relationship between T and φ may be established. Finally, we use space-resolved dynamic light scattering to demonstrate that, upon varying T, our system exhibits a broad range of dynamical behaviors across the glass transition and beyond, comparable with those exhibited by a series of distinct silica nanoparticle suspensions of various φ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA