Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Invertebr Pathol ; 201: 108019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956857

RESUMO

The bay scallop Argopecten irradians supported a commercial fishery in Florida but their population declined and the fishery closed in 1994. A recreational fishery remains open along the west coast of Florida despite continued threats from overfishing and a changing environment. Disease is among those threats, as it is for bivalve fisheries globally. We examined the relationship between bay scallop population density, its symbiotic microbiome, and geographic location. We focused on three sites within the range of Florida's recreational scallop fishery: St. Joseph Bay (northern extent), offshore of the Steinhatchee River (central), and offshore of Hernando County (southern extent). The study was conducted prior to the seasonal opening of the fishery to minimize the impact of fishing on our results. We also sampled caged scallops that are used for restocking in St. Joseph Bay to assess the effect of artificially high density and confinement on the scallop pathobiome. Using a combination of traditional histological methods, molecular diagnostics, and metagenomics, a suite of 15 symbionts were identified. Among them, RNA-seq data revealed four novel + ssRNA viral genomes: three picorna-like viruses and one hepe-like virus. The DNA-seq library revealed a novel Mycoplasma species. Histological evaluation revealed that protozoan, helminth and crustacean infections were common in A. irradians. These potential pathogens add to those already known for A. irradians and underscores the risk they pose to the fishery.


Assuntos
Conservação dos Recursos Naturais , Pectinidae , Animais , Florida , Pesqueiros , Biblioteca Gênica
2.
J Invertebr Pathol ; 197: 107886, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646414

RESUMO

The microsporidian diversity catalogued so far has resulted in the development of several taxonomic groups, one of which is the Enterocytozoonida - a group of generalist 'ultimate opportunists', which infect many fished and aquacultured animals, as well as a broad suite of host taxa, including humans. In this study, we provide phylogenetic, ultrastructural, developmental, and pathological evidence for the creation of a new genus and species to hold a microsporidian parasite of the Jonah crab, Cancer borealis. Cancer borealis represents a species of commercial interest and has become the target of a recently developed fishery on the USA and Canadian Atlantic coast. This species was found to harbour a microsporidian parasite that develops in the cytoplasm of alpha and beta cells of the hepatopancreas. We retrieved a 937 bp fragment of the parasite SSU region, alongside developmental and ultrastructural data that suggests this species is âˆ¼ 87 % similar to Parahepatospora carcini and develops in a similar manner in direct association with the host cell cytoplasm. The mature spores are ovoid in shape and measure 1.48 ± 0.15 µm (SD) in length and 1.00 ± 0.11 µm (SD) in width. Phylogenetically, the new parasite clades in the Enterocytozoonida on the same branch as P. carcini. We provide a new genus and species to hold the parasite: Pseudohepatospora borealis n. gen. n. sp. (Microsporidia: Enterocytozoonida) and explore the likelihood that this species may fit into the Hepatoporidae family.


Assuntos
Braquiúros , Microsporídios , Neoplasias , Humanos , Animais , Braquiúros/parasitologia , Filogenia , Canadá , Microsporídios/genética
3.
J Invertebr Pathol ; 199: 107948, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276935

RESUMO

Crayfish have strong ecological impacts in freshwater systems, yet our knowledge of their parasites is limited. This study describes the first systemic microsporidium (infects multiple tissue types) Alternosema astaquatica n. sp. (Enterocytozoonida) isolated from a crayfish host, Faxonius virilis, using histopathology, transmission electron microscopy, gene sequencing, and phylogenetics. The parasite develops in direct contact with the host cell cytoplasm producing mature spores that are monokaryotic and ellipsoid in shape. Spores have 9-10 coils of the polar filament and measure 3.07 ± 0.26 µm (SD) in length and 0.93 ± 0.08 µm (SD) in width. Our novel isolate has high genetic similarity to Alternosema bostrichidis isolated from terrestrial beetles; however, genetic data from this parasite is restricted to a small fragment (396 bp) of the SSU gene. Additional data related to spore morphology and development, host, environment, and ecology indicate that our novel isolate is distinct from A. bostrichidis, which supports a new species description. Alternosema astaquatica n. sp. represents a novel member of the Orthosomella-like group which appears to be a set of opportunists within the Enterocytozoonida. The presence of this microsporidium in F. virilis could be relevant for freshwater ecosystems across this crayfish's broad geographic range in North America and may affect interactions between F. virilis and invasive rusty crayfish Faxonius rusticus in the Midwest USA.


Assuntos
Microsporídios , Parasitos , Animais , Microsporídios/genética , Astacoidea , Ecossistema , Filogenia
4.
J Invertebr Pathol ; 199: 107949, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276936

RESUMO

Crayfishes are among the most widely introduced freshwater taxa and can have extensive ecological impacts. Knowledge of the parasites crayfish harbor is limited, yet co-invasion of parasites is a significant risk associated with invasions. In this study, we describe a novel microsporidium, Cambaraspora faxoni n. sp. (Glugeida: Tuzetiidae), from two crayfish hosts in the Midwest USA, Faxonius virilis and Faxonius rusticus. We also expand the known host range of Cambaraspora floridanus to include Procambarus spiculifer. Cambaraspora faxoni infects muscle and heart tissue of F. rusticus and develops within a sporophorous vesicle. The mature spore measures 3.22 ± 0.14 µm in length and 1.45 ± 0.13 µm in width, with 8-9 turns of the polar filament. SSU sequencing indicates the isolates from F. virilis and F. rusticus were identical (100%) and 93.49% similar to C. floridanus, supporting the erection of a new species within the Cambaraspora genus. The novel parasite was discovered within the native range of F. rusticus (Ohio, USA) and within a native congeneric (F. virilis) in the invasive range of F. rusticus (Wisconsin, USA). Faxonius virilis is invasive in other regions. This new parasite could have been introduced to Wisconsin with F. rusticus or it may be a generalist species with a broad distribution. In either case, this parasite infects two crayfish species that have been widely introduced to new drainages throughout North America and could have future effects on invasion dynamics or impacts.


Assuntos
Microsporídios , Animais , Microsporídios/genética , Astacoidea/parasitologia , Meio Ambiente , Wisconsin
5.
J Invertebr Pathol ; 198: 107930, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148998

RESUMO

Subtropical Florida blue crabs, Callinectes sapidus, exhibit differing life history traits compared to their temperate counterparts, likely influencing symbiont infection dynamics. Little information exists for Florida C. sapidus symbiont profiles, their distribution among various habitats, and influence on crab condition. Using histopathology, genomics, and transmission electron microscopy, we describe the first symbiont profiles for Florida C. sapidus occupying freshwater to marine habitats. Twelve symbiont groups were identified from 409 crabs including ciliophorans, digenean, microsporidian, Haplosporidia, Hematodinium sp., Nematoda, filamentous bacteria, gregarine, Callinectes sapidus nudivirus, Octolasmis sp., Cambarincola sp., and putative microcell. Overall, 78% of C. sapidus were documented with one or more symbiont groups demonstrating high infection rates in wild populations. Environmental variables water temperature and salinity explained 48% of the variation in symbiont groups among Florida habitats, and salinity was positively correlated with C. sapidus symbiont diversity. This suggests freshwater C. sapidus possess fewer symbionts and represent healthier individuals compared to saltwater populations. Crab condition was examined using the reflex action mortality predictor (RAMP) to determine if reflex impairment could be linked to symbiont prevalence. Symbionts were found positively correlated with crab condition, and impaired crabs were more likely to host symbionts, demonstrating symbiont inclusion may boost predictive ability of the RAMP application. The microsporidian symbiont group had a particularly strong effect on C. sapidus reflex response, and impairment was on average 1.57 times higher compared to all other symbiont groups. Our findings demonstrate the importance of considering full symbiont profiles and their associations with a spatially and temporally variable environment to fully assess C. sapidus population health.


Assuntos
Braquiúros , Dinoflagellida , Animais , Florida , Temperatura , Salinidade , Dinoflagellida/fisiologia
6.
J Invertebr Pathol ; 194: 107822, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030880

RESUMO

Callinectes sapidus, or the 'blue crab', supports an extensive east-coast USA fishery and was one of the first crustacean species in which viruses were observed. Pioneering research by Dr Phyllis Johnson led to these initial discoveries, one of which included the discovery of a virus termed "Baculovirus-A". This virus was considered a potential member of the Baculoviridae, Nimaviridae, or Nudiviridae, in which all viral members are rod-shaped dsDNA viruses found in the nucleus of their host cell. With the availability of genomic and bioinformatic tools, such as Illumina HiSeq and assembly programs, it is now possible to assemble the genomes of viruses and gain additional genomic insight, which can shed light on viral taxonomy. Using these tools, alongside electron micrographs and histology slides, we reveal that the hepatopancreas-infecting 'Baculovirus-A' from Callinectes sapidus is a member of the Nudiviridae, resembling genetic and protein similarity to other crab and lobster infecting nudiviruses from the Gammanudivirus genus. Histologically, the virus causes nuclear hypertrophy as observed for other gammanuriviruses. The genome of the virus is circular, 122,436 bp in length, and encodes a predicted 98 protein coding genes, including all of the nudivirus core genes. The prevalence of virus from across Florida, USA, is provided alongside a genomic comparison of the new viral genome against other Gammanudivirus species, revealing the average prevalence to be 2.2% and that Callinectes sapidus nudivirus is distantly similar to the recently described Carcinus maenas nudivirus from Canada.


Assuntos
Braquiúros , Nudiviridae , Animais , Baculoviridae/genética , Braquiúros/genética , Genoma Viral , Filogenia
7.
J Invertebr Pathol ; 191: 107766, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35472375

RESUMO

Ovipleistophora (Microsporidia) is a globally distributed genus of obligate parasites that infect fish, Crustacea, and trematodes. We report on two additional crayfish hosts, Procambarus pictus (Simms Creek, Florida) and Procambarus fallax (Santa Fe River, Florida), that exhibited signs of high-intensity microsporidian infection in the musculature. Sequence data (SSU) for the isolates were 99.79% and 99.97% similar to Ovipleistophora diplostomuri parasitizing Procambarus bivittatus. Additional screening of regional fish species (Lepomis macrochirus) revealed additional microsporidian diversity (Potaspora) but did not include Ovipleistophora. Detecting Clade V isolates in multiple host groups provides further evidence for trophic transmission among Clade V microsporidia.


Assuntos
Microsporídios , Microsporidiose , Pansporablastina , Animais , Astacoidea , Peixes , Florida , Filogenia
8.
Heredity (Edinb) ; 126(1): 63-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699391

RESUMO

Understanding population genetic structure can help us to infer dispersal patterns, predict population resilience and design effective management strategies. For sessile species with limited dispersal, this is especially pertinent because genetic diversity and connectivity are key aspects of their resilience to environmental stressors. Here, we describe the population structure of Ircinia campana, a common Caribbean sponge subject to mass mortalities and disease. Microsatellites were used to genotype 440 individuals from 19 sites throughout the Greater Caribbean. We found strong genetic structure across the region, and significant isolation by distance across the Lesser Antilles, highlighting the influence of limited larval dispersal. We also observed spatial genetic structure patterns congruent with oceanography. This includes evidence of connectivity between sponges in the Florida Keys and the southeast coast of the United States (>700 km away) where the oceanographic environment is dominated by the strong Florida Current. Conversely, the population in southern Belize was strongly differentiated from all other sites, consistent with the presence of dispersal-limiting oceanographic features, including the Gulf of Honduras gyre. At smaller spatial scales (<100 km), sites showed heterogeneous patterns of low-level but significant genetic differentiation (chaotic genetic patchiness), indicative of temporal variability in recruitment or local selective pressures. Genetic diversity was similar across sites, but there was evidence of a genetic bottleneck at one site in Florida where past mass mortalities have occurred. These findings underscore the relationship between regional oceanography and weak larval dispersal in explaining population genetic patterns, and could inform conservation management of the species.


Assuntos
Estruturas Genéticas , Oceanografia , Região do Caribe , Humanos
9.
J Invertebr Pathol ; 186: 107500, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33144148

RESUMO

Crustaceans permeate every habitat on Earth but are especially impactful in the marine environment. They can be small and extremely abundant like the ubiquitous marine copepods found throughout the world's oceans, or large and highly prized by fishermen like spiny lobsters found in tropical and temperate seas, globally. The latter are among the decapod crustaceans, a group which includes crabs, shrimps, and lobsters - those targeted most commonly by fishery and aquaculture industries. Hence, crustaceans are ecologically important, but they are also directly linked to the economic and nutritional health of human populations. To most effectively manage and conserve crustacean populations in the face of a changing ocean environment, whether they are harvested or not, requires a One Health approach that underscores the linkages between crustacean, human, and environmental health. Here, we give an overview of the need, benefits, and challenges to taking the One Health approach to crustacean health and argue that when viewed through the One Health lens, there is perhaps no other group of marine animals more worthy of that perspective.


Assuntos
Aquicultura , Mudança Climática , Crustáceos/fisiologia , Oceanos e Mares , Saúde Única , Animais
10.
J Invertebr Pathol ; 177: 107494, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33115693

RESUMO

A positive, single-stranded RNA virus is identified from the transcriptome of Probopyrinella latreuticola Gissler, 1882; a bopyrid isopod parasite of the Sargassum shrimp, Latreutes fucorum Fabricius, 1789. The viral sequence is 13,098 bp in length (including polyA), encoding four open reading frames (ORF). ORF-1 encodes a polyprotein, with three computationally discernible functional domains: viral methyltransferase; viral helicase; and RNA-directed RNA polymerase. The remaining ORFs encode a transmembrane protein, a capsid protein and a protein of undetermined function. The raw transcriptomic data reveal a low level of background single nucleotide mutations within the data. Comparison of the protein sequence data and synteny with other viral isolates reveals that the greatest protein similarity (<39%) is shared with the Negevirus group, a group that exclusively infects insects. Phylogenetic assessment of the individual polyprotein domains revealed a mixed prediction of phylogenetic origins, suggesting with low confidence that the novel +ssRNA virus could be present in multiple places throughout the individual gene trees. A concatenated approach strongly suggested that this new virus is an early diverging isolate, branching before the Negevirus and Cilevirus groups. Alongside the new isolate are other marine viruses, also present toward the base of the tree. The isopod virosphere, with the addition of this novel virus, is discussed relative to viral genomics/systematics. A great diversity of nege-like viruses appears to be present in marine invertebrate hosts, which require greater efforts for discovery and identification.


Assuntos
Isópodes/virologia , Vírus de RNA de Cadeia Positiva/isolamento & purificação , Animais , Decápodes/parasitologia , Parasitos/virologia
11.
J Invertebr Pathol ; 169: 107306, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31836486

RESUMO

Ovipleistophora diplostomuri (Microsporidia) is an obligate parasite of fish and trematodes in the US. In April 2019, an individual crayfish, Procambarus bivittatus (Escambia River, Florida), with a high-intensity microsporidian infection was delivered to the Emerging Pathogens Institute. Histological analysis determined that infection was restricted to the muscle tissue. Molecular diagnostics (PCR) provided 952 bp of the parasite SSU (18S) sequence. The isolate was 99.16% similar to O. diplostomuri identified from blue gill and their trematode parasites in Washington, USA. This discovery increases our understanding of Microsporidia within aquatic trophic networks, supporting the theory that the Ovipleistophora share complex relationships with vertebrates, invertebrates and helminth parasites.


Assuntos
Astacoidea/microbiologia , Interações Hospedeiro-Patógeno , Microsporídios/fisiologia , Animais
12.
J Invertebr Pathol ; 171: 107345, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067978

RESUMO

Crayfish are a vital ecological asset in their native range but can be highly damaging as invasive species. Knowledge of their diseases, including high levels of research on Aphanomyces astaci (crayfish plague), show that disease plays a vital role during crayfish invasions. Microsporidian diseases in crayfish are less studied but are thought to have important links to crayfish health and invasion dynamics. In this study we provide a systematic description of a novel microsporidian parasite from the Floridian crayfish, Procambarus paeninsulanus, with additional genetic identification from related Microsporidia from Procambarus fallax, Cambarellus shufeldtii and Cambarellus blacki. This novel microsporidium from P. paeninsulanus is described in a new genus, Cambaraspora, and species, Cambaraspora floridanus, and represents a novel member of the Clade V Microsporidia within the Glugeidae. The parasite develops in the muscle tissue of P. paeninsulanus, within a sporophorous vesicle, and produces a spore with 19-21 turns of the polar filament measuring 6.136 ± 0.84 µm in length and 2.12 ± 0.23 µm in width. The muscle-infecting nature of the parasite suggests that it is horizontally transmitted. Genetic data for the 18S of the parasite from all hosts confirms its assignment to Clade V and reveal it to be a relative of multiple fish-infecting parasites. It shows closest genetic relationship to Glugea plecoglossi, but branches alongside multiple microsporidia from fish, crustaceans and eDNA isolates. The information presented here suggests that this novel parasite may have the potential to infect piscine hosts and is a likely mortality driver in the P. paeninsulanus population. Its potential as a control agent or wildlife disease invasion threat is explored, as well as the placement of this novel microsporidium within the Glugeidae.


Assuntos
Astacoidea/microbiologia , Interações Hospedeiro-Patógeno , Pansporablastina/classificação , Pansporablastina/fisiologia , Animais , Florida , Microscopia Eletrônica de Transmissão , Pansporablastina/genética , Pansporablastina/ultraestrutura , RNA Fúngico/análise , RNA Ribossômico 18S/análise
13.
J Anim Ecol ; 88(11): 1684-1695, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31325164

RESUMO

Marine sponges are hosts to large, diverse communities of microorganisms. These microbiomes are distinct among sponge species and from seawater bacterial communities, indicating a key role of host identity in shaping its resident microbial community. However, the factors governing intraspecific microbiome variability are underexplored and may shed light on the evolutionary and ecological relationships between host and microbiome. Here, we examined the influence of genetic variation and geographic location on the composition of the Ircinia campana microbiome. We developed new microsatellite markers to genotype I. campana from two locations in the Florida Keys, USA, and characterized their microbiomes using V4 16S rRNA amplicon sequencing. We show that microbial community composition and diversity is influenced by host genotype, with more genetically similar sponges hosting more similar microbial communities. We also found that although I. campana was not genetically differentiated between sites, microbiome composition differed by location. Our results demonstrate that both host genetics and geography influence the composition of the sponge microbiome. Host genotypic influence on microbiome composition may be due to stable vertical transmission of the microbial community from parent to offspring, making microbiomes more similar by descent. Alternatively, sponge genotypic variation may reflect variation in functional traits that influence the acquisition of environmental microbes. This study reveals drivers of microbiome variation within and among locations, and shows the importance of intraspecific variability in mediating eco-evolutionary dynamics of host-associated microbiomes.


Assuntos
Microbiota , Poríferos , Animais , Florida , Geografia , Filogenia , RNA Ribossômico 16S
14.
J Invertebr Pathol ; 162: 1-9, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30731071

RESUMO

The Caribbean spiny lobster Panulirus argus is susceptible to infection by Panulirus argus Virus 1 (PaV1), the only virus known to naturally infect any lobster species. However, P. argus is able to mitigate PaV1 transmission risk by avoiding infected individuals. P. argus may also be susceptible to another lethal virus, White Spot Syndrome Virus (WSSV). WSSV has not been documented in wild populations of spiny lobsters, but has been experimentally transmitted to six other lobster species from the genus Panulirus. Although WSSV has been detected intermittently in wild populations of shrimp in the Caribbean region, the risk to P. argus has not been evaluated. Potential emergence of the disease could result in fisheries losses and ecological disruption. To assess the risk to P. argus, we tested its susceptibility to WSSV via injection and waterborne transmission. We also tested whether healthy lobsters can detect and avoid conspecifics with qPCR-quantifiable WSSV infections. We found P. argus to be highly susceptible to WSSV via intramuscular injection, with mortality reaching 88% four weeks post inoculation. Panulirus argus was also susceptible to WSSV via waterborne transmission, but WSSV burden was low after four weeks via qPCR. Behavioral assays indicated that P. argus can detect and avoid conspecifics infected with WSSV and the avoidance response was strongest for the most heavily infected individuals - a response comparable to PaV1-infected conspecifics. Panulirus argus is the first spiny lobster found to be susceptible to WSSV in the Americas, but it is possible that a generalized avoidance response by healthy lobsters against infected conspecifics provides a behavioral defense and may reduce WSSV infection potential and prevalence. Preliminary evidence suggests that the infiltration of hemolymph constituents into the urine may be the source of the avoidance behavior and could therefore extend to other directly transmitted pathogens in spiny lobster populations preventing them from becoming common in their population.


Assuntos
Comportamento Animal , Suscetibilidade a Doenças/virologia , Palinuridae/virologia , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , Região do Caribe , Quimiotaxia/imunologia , Vírus de DNA/patogenicidade , Decápodes/virologia , Imunidade , Fatores de Risco , Alimentos Marinhos
15.
J Invertebr Pathol ; 163: 21-33, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836072

RESUMO

Crustaceans suffer from diseases that can alter their survival and ecology with additional economic consequences for fisheries and aquaculture. Many parasites have been described from crustaceans and with the advent of novel technologies such as next generation sequencing, the discovery of novel parasites has become increasingly efficient. Molecular techniques are beginning to surpass more conventional tools for parasite discovery, but they typically do not provide information on pathology. Histopathology remains one of the least expensive methods for parasite discovery and allows for both detection of parasites and descriptions of the pathology they cause. When used in concert with modern molecular and electron microscopy techniques, the approach is powerful; however, there are few informational tools for the interpretation of histological slides from crustaceans. Those available do not provide comprehensive images of all organs and early works were limited to lower resolution than currently available. More recent texts provide in-depth details of infection in histological section, but few provide images of healthy material or describe a baseline from which to compare. Here, we provide a series of image plates derived from histologically processed tissues from three palinurid lobsters: Panulirus argus, Palinurus elephas and Panulirus guttatus. Histology from these lobsters shows high visual similarity in all tissue types. We provide a histological atlas of healthy tissue that can be used as a baseline resource for pathobiologists working on these common species (and related crustaceans) and we discuss how disease may result in visual aberrations to these tissues.


Assuntos
Palinuridae/anatomia & histologia , Palinuridae/citologia , Animais , Atlas como Assunto , Técnicas Histológicas
16.
Dis Aquat Organ ; 129(3): 193-198, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30154279

RESUMO

The Caribbean spiny lobster Panulirus argus supports important fisheries throughout the greater Caribbean and is also the only known host for the pathogenic virus Panulirus argus virus 1 (PaV1). While discovered nearly 2 decades ago, gaps still exist in our knowledge of PaV1, such as the dose required to establish infection and its viability outside of the host. To help answer such questions and to enhance diagnostic capabilities, we developed a TaqMan real-time quantitative polymerase chain reaction (qPCR) assay for PaV1. Of the advantages offered by qPCR, one of the most important benefits is its ability to accurately quantify viral DNA copies in a clinical sample. The qPCR assay was found to be efficient (mean ± SD: 99.19 ± 4.67%) and sensitive, detecting as few as 10 copies of PaV1 plasmid DNA. Its diagnostic sensitivity and specificity determined using a set of 165 lobster samples (138 from Florida, USA, and 27 from across the Caribbean) were 100 and 84%, respectively. The qPCR assay should thus prove useful as a research tool and for detecting and quantifying PaV1 infection severity in Caribbean spiny lobsters.


Assuntos
Vírus de DNA/isolamento & purificação , DNA Viral/genética , Palinuridae/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Sequência de Bases , Vírus de DNA/genética , DNA Viral/isolamento & purificação , Interações Hospedeiro-Patógeno , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Oecologia ; 184(1): 205-218, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28247130

RESUMO

Interspecific competition is assumed to have a strong influence on the population dynamics of competing species, but is not easily demonstrated for mobile species in the wild. In the Florida Keys (USA), anecdotal observations have long pointed to an inverse relationship in abundance of two large decapod crustaceans found co-occurring in hard-bottom habitat, the stone crab Menippe mercenaria and the Caribbean spiny lobster Panulirus argus. We used them to explicitly test whether competition for a renewable resource (shelter) can drive the abundance and distribution of the inferior competitor. We first explored this relationship in shelter competition mesocosm experiments to determine the competitively dominant species. Results showed that stone crabs are clearly the dominant competitors regardless of the number of lobsters present, the presence of co-sheltering species such as the spider crab, Damithrax spinosissimus, or the order of introduction of competitors into the mesocosm. We also found that lobsters use chemical cues from stone crabs to detect and avoid them. We then tested the ramifications of this competitive dominance in the field by manipulating stone crab abundance and then tracking the abundance and distribution of spiny lobsters through time. Increased stone crab abundance immediately resulted in decreased lobster abundance and increased aggregation. The opposite occurred on sites where stone crabs were removed. When we stopped removing stone crabs from these sites, they soon returned and lobster abundance decreased. This study explicitly demonstrated that interspecific competition can drive population dynamics between these species, and ultimately, community composition in these shallow water habitats.


Assuntos
Ecossistema , Palinuridae , Animais , Braquiúros , Dinâmica Populacional , Comportamento Social
18.
Virology ; 588: 109910, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844408

RESUMO

Menippe mercenaria, the Florida stone crab, supports an unconventional fishery across the southern USA and Caribbean that involves claw-removal and the return of de-clawed animals to the sea. We provide pathological, ultrastructural, and genomic detail for a novel hepatopancreatic, nucleus-specific virus - Menippe mercenaria nudivirus (MmNV) - isolated from M. mercenaria, captured during fisheries-independent monitoring. The virus has a genome of 99,336 bp and encodes 84 predicted protein coding genes and shows greatest similarity to Aratus pisonii nudivirus (ApNV) (<60% protein similarity and 31 shared genes of greatest similarity), collected from the Florida Keys, USA. MmNV is a member of the Gammanudivirus genus (Naldaviricetes: Lefavirales: Nudiviridae). Comparisons of virus genome size, preferred host environment, and gene number revealed no clear associations between the viral traits and phylogenetic position. Evolution of the virus alongside the diversification of host taxa, with the potential for host-switching, remain more likely evolutionary pathways.


Assuntos
Braquiúros , Mercenaria , Nudiviridae , Animais , Braquiúros/metabolismo , Florida , Filogenia
19.
Viruses ; 15(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851777

RESUMO

The movement of viruses in aquatic systems is rarely studied over large geographic scales. Oceanic currents, host migration, latitude-based variation in climate, and resulting changes in host life history are all potential drivers of virus connectivity, adaptation, and genetic structure. To expand our understanding of the genetic diversity of Callinectes sapidus reovirus 1 (CsRV1) across a broad spatial and host life history range of its blue crab host (Callinectes sapidus), we obtained 22 complete and 96 partial genomic sequences for CsRV1 strains from the US Atlantic coast, Gulf of Mexico, Caribbean Sea, and the Atlantic coast of South America. Phylogenetic analyses of CsRV1 genomes revealed that virus genotypes were divided into four major genogroups consistent with their host geographic origins. However, some CsRV1 sequences from the US mid-Atlantic shared high genetic similarity with the Gulf of Mexico genotypes, suggesting potential human-mediated movement of CsRV1 between the US mid-Atlantic and Gulf coasts. This study advances our understanding of how climate, coastal geography, host life history, and human activity drive patterns of genetic structure and diversity of viruses in marine animals and contributes to the capacity to infer broadscale host population connectivity in marine ecosystems from virus population genetic data.


Assuntos
Braquiúros , Orthoreovirus de Mamíferos , Reoviridae , Animais , Humanos , Ecossistema , Filogenia , Estruturas Genéticas , Variação Genética
20.
Nature ; 441(7092): 421, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16724051

RESUMO

Transmissible pathogens are the bane of social animals, so they have evolved behaviours to decrease the probability of infection. There is no record, however, of social animals avoiding diseased individuals of their own species in the wild. Here we show how healthy, normally gregarious Caribbean spiny lobsters (Panulirus argus) avoid conspecifics that are infected with a lethal virus. Early detection and avoidance of infected, though not yet infectious, individuals by healthy lobsters confers a selective advantage and highlights the importance of host behaviour in disease transmission among natural populations.


Assuntos
Aprendizagem da Esquiva/fisiologia , Portador Sadio/veterinária , Transmissão de Doença Infecciosa/veterinária , Palinuridae/fisiologia , Palinuridae/virologia , Comportamento Social , Animais , Animais Selvagens/fisiologia , Animais Selvagens/virologia , Evolução Biológica , Portador Sadio/prevenção & controle , Portador Sadio/transmissão , Portador Sadio/virologia , Transmissão de Doença Infecciosa/prevenção & controle , Ecologia , Saúde , Modelos Biológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA