Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
EMBO J ; 34(10): 1371-84, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25820263

RESUMO

The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy-controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb-dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase-deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy-induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.


Assuntos
Aneuploidia , Telomerase/metabolismo , Telômero/metabolismo , Animais , Senescência Celular/genética , Senescência Celular/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Telomerase/genética , Telômero/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Sci Adv ; 8(3): eabk0114, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044816

RESUMO

Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients' cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.


Assuntos
Segregação de Cromossomos , Microcefalia , Aneuploidia , Segregação de Cromossomos/genética , Humanos , Microcefalia/genética , Mutação , Proteínas Serina-Treonina Quinases/genética
4.
Circ Cardiovasc Genet ; 9(2): 130-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26933038

RESUMO

BACKGROUND: Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. METHODS AND RESULTS: An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. CONCLUSIONS: Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies.


Assuntos
Anormalidades Múltiplas/genética , Cardiomiopatias/genética , Morte Súbita Cardíaca/patologia , Exoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Doenças Musculares/genética , Mutação/genética , Sítios de Splice de RNA/genética , Análise de Sequência de DNA , Adolescente , Adulto , Western Blotting , Pré-Escolar , Fácies , Feminino , Regulação da Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Hipertrofia , Lactente , Masculino , Mioblastos/metabolismo , Linhagem , Fenótipo , Isoformas de Proteínas/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA