Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Malar J ; 23(1): 24, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238772

RESUMO

BACKGROUND: Malaria outbreaks have sporadically occurred in the United States, with Anopheles quadrimaculatus serving as the primary vector in the eastern region. Anopheles crucians, while considered a competent vector, has not been directly implicated in human transmission. Considering the locally acquired Plasmodium vivax cases in Sarasota County, Florida (7 confirmed cases), Cameron County, Texas (one confirmed case), and Maryland (one confirmed case) in the summer of 2023. The hypothesis of this study is that major cities in the United States harbour sufficient natural populations of Anopheles species vectors of malaria, that overlap with human populations that could support local transmission to humans. The objective of this study is to profile the most abundant Anopheles vector species in Miami-Dade County, Florida-An. crucians and An. quadrimaculatus. METHODS: This study was based on high-resolution mosquito surveillance data from 2020 to 2022 in Miami-Dade County, Florida. Variations on the relative abundance of An. crucians and An. quadrimaculatus was assessed by dividing the total number of mosquitoes collected by each individual trap in 2022 by the number of mosquitoes collected by the same trap in 2020. In order to identify influential traps, the linear distance in meters between all traps in the surveillance system from 2020 to 2022 was calculated and used to create a 4 km buffer radius around each trap in the surveillance system. RESULTS: A total of 36,589 An. crucians and 9943 An. quadrimaculatus were collected during this study by the surveillance system, consisting of 322 CO2-based traps. The findings reveal a highly heterogeneous spatiotemporal distribution of An. crucians and An. quadrimaculatus in Miami-Dade County, highlighting the presence of highly conducive environments in transition zones between natural/rural and urban areas. Anopheles quadrimaculatus, and to a lesser extent An. crucians, pose a considerable risk of malaria transmission during an outbreak, given their high abundance and proximity to humans. CONCLUSIONS: Understanding the factors driving the proliferation, population dynamics, and spatial distribution of Anopheles vector species is vital for implementing effective mosquito control and reducing the risk of malaria outbreaks in the United States.


Assuntos
Anopheles , Malária , Animais , Humanos , Malária/epidemiologia , Mosquitos Vetores , Florida/epidemiologia
2.
Malar J ; 20(1): 151, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731111

RESUMO

BACKGROUND: Attractive targeted sugar baits (ATSBs) are a promising new tool for malaria control as they can target outdoor-feeding mosquito populations, in contrast to current vector control tools which predominantly target indoor-feeding mosquitoes. METHODS: It was sought to estimate the potential impact of these new tools on Plasmodium falciparum malaria prevalence in African settings by combining data from a recent entomological field trial of ATSBs undertaken in Mali with mathematical models of malaria transmission. The key parameter determining impact on the mosquito population is the excess mortality due to ATSBs, which is estimated from the observed reduction in mosquito catch numbers. A mathematical model capturing the life cycle of P. falciparum malaria in mosquitoes and humans and incorporating the excess mortality was used to estimate the potential epidemiological effect of ATSBs. RESULTS: The entomological study showed a significant reduction of ~ 57% (95% CI 33-72%) in mosquito catch numbers, and a larger reduction of ~ 89% (95% CI 75-100%) in the entomological inoculation rate due to the fact that, in the presence of ATSBs, most mosquitoes do not live long enough to transmit malaria. The excess mortality due to ATSBs was estimated to be lower (mean 0.09 per mosquito per day, seasonal range 0.07-0.11 per day) than the bait feeding rate obtained from one-day staining tests (mean 0.34 per mosquito per day, seasonal range 0.28-0.38 per day). CONCLUSIONS: From epidemiological modelling, it was predicted that ATSBs could result in large reductions (> 30% annually) in prevalence and clinical incidence of malaria, even in regions with an existing high malaria burden. These results suggest that this new tool could provide a promising addition to existing vector control tools and result in significant reductions in malaria burden across a range of malaria-endemic settings.


Assuntos
Anopheles/efeitos dos fármacos , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Feromônios/farmacologia , Açúcares/farmacologia , Animais , Mali , Modelos Biológicos
3.
Malar J ; 20(1): 184, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853632

RESUMO

BACKGROUND: Application methods of |Attractive Toxic Sugar Baits (ATSB) need to be improved for wide-scale use, and effects on non-target organisms (NTOs) must be assessed. The goals of this study were to determine, at the village level, the effect of different configurations of bait stations to (1) achieve < 25% Anopheles mosquito vector daily feeding rate for both males and females and (2) minimize the effect on non-target organisms. METHODS: Dye was added to Attractive Sugar Bait Stations (without toxin) to mark mosquitoes feeding on the baits, and CDC UV light traps were used to monitor for marked mosquitoes. An array of different traps were used to catch dye marked NTOs, indicating feeding on the ASB. Stations were hung on homes (1, 2, or 3 per home to optimize density) at different heights (1.0 m or 1.8 m above the ground). Eight villages were chosen as for the experiments. RESULTS: The use of one ASB station per house did not mark enough mosquitoes. Use of two and three stations per house gave feeding rates above the 25% goal. There was no statistical difference in the percentage of marked mosquitoes between two and three stations, however, the catches using two and three bait stations were both significantly higher than using one. There was no difference in An. gambiae s.l. feeding when stations were hung at 1.0 and 1.8 m. At 1.8 m stations sustained less accidental damage. ASB stations 1.8 m above ground were fed on by three of seven monitored insect orders. The monitored orders were: Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Neuroptera and Orthoptera. Using one or two stations significantly reduced percentage of bait-fed NTOs compared to three stations which had the highest feeding rates. Percentages were as follows: 6.84 ± 2.03% Brachycera followed by wasps (Hymenoptera: Vespidae) 5.32 ± 2.27%, and Rhopalocera 2.22 ± 1.79%. Hanging the optimal number of stations per house for catching mosquitoes (two) at 1.8 m above ground, limited the groups of non-targets to Brachycera, Chironomidae, Noctuoidea, Rhopalocera, parasitic wasps and wasps (Hymenoptera). Feeding at 1.8 m only occurred when stations were damaged. CONCLUSIONS: The goal of marking quarter of the total Anopheles population per day was obtained using 2 bait stations at 1.8 m height above the ground. This configuration also had minimal effects on non-target insects.


Assuntos
Anopheles , Malária/prevenção & controle , Controle de Mosquitos , Plasmodium/efeitos dos fármacos , Açúcares , Animais , Feminino , Insetos/efeitos dos fármacos , Malária/transmissão , Masculino , Mali , Controle de Mosquitos/métodos
4.
Ecol Appl ; 31(5): e02329, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33752255

RESUMO

Geographic profiling, a mathematical model originally developed in criminology, is increasingly being used in ecology and epidemiology. Geographic profiling boasts a wide range of applications, such as finding source populations of invasive species or breeding sites of vectors of infectious disease. The model provides a cost-effective approach for prioritizing search strategies for source locations and does so via simple data in the form of the positions of each observation, such as individual sightings of invasive species or cases of a disease. In doing so, however, classic geographic profiling approaches fail to make the distinction between those areas containing observed absences and those areas where no data were recorded. Absence data are generated via spatial sampling protocols but are often discarded during the inference process. Here we construct a geographic profiling model that resolves these issues by making inferences via count data, analyzing a set of discrete sentinel locations at which the number of encounters has been recorded. Crucially, in our model this number can be zero. We verify the ability of this new model to estimate source locations and other parameters of practical interest via a Bayesian power analysis. We also measure model performance via real-world data in which the model infers breeding locations of mosquitoes in bromeliads in Miami-Dade County, Florida, USA. In both cases, our novel model produces more efficient search strategies by shifting focus from those areas containing observed absences to those with no data, an improvement over existing models that treat these areas equally. Our model makes important improvements upon classic geographic profiling methods, which will significantly enhance real-world efforts to develop conservation management plans and targeted interventions.


Assuntos
Culicidae , Mosquitos Vetores , Animais , Teorema de Bayes , Ecologia , Florida
5.
J Infect Dis ; 222(Suppl 8): S709-S716, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33119099

RESUMO

BACKGROUND: The role of human mobility in the epidemiology of emerging Aedes-transmitted viral diseases is recognized but not fully understood. The objective of this systematic review and meta-analysis was to examine how human mobility patterns are driving chikungunya outbreaks. METHODS: Literature was systematically reviewed for studies on chikungunya prevalence in countries/territories with high-level evidence of human mobility-driven outbreaks, based on: (1) emergence of chikungunya outbreaks with epidemic chikungunya virus genotypes among displaced/migrant populations and their hosting communities; and (2) identification of imported index case(s) with epidemic genotypes phylogenetically related to the genotypes circulating during emerging or subsequent outbreaks. RESULTS: The meta-analysis of extracted prevalence data revealed that a large proportion of the population in countries/territories afflicted by outbreaks is still at risk of infection during future outbreaks. On the other hand, approximately one-half of suspected chikungunya cases could be infected with other co-circulating acute febrile illnesses. CONCLUSIONS: We discussed in this paper how human mobility-driven chikungunya outbreaks can be addressed, and how the involvement of several sectors in addition to the health sector in multisectoral approaches (MSAs) is important for prevention and control of chikungunya and other Aedes-transmitted arboviral outbreaks.


Assuntos
Febre de Chikungunya/epidemiologia , Controle de Doenças Transmissíveis/métodos , Surtos de Doenças/prevenção & controle , Dinâmica Populacional/tendências , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Coinfecção/epidemiologia , Genótipo , Humanos , Colaboração Intersetorial , Filogenia , Prevalência
6.
Malar J ; 19(1): 72, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059671

RESUMO

BACKGROUND: The aim of this field trial was to evaluate the efficacy of attractive toxic sugar baits (ATSB) in Mali, where sustained malaria transmission occurs despite the use of long-lasting insecticidal nets (LLINs). ATSB bait stations were deployed in seven of 14 similar study villages, where LLINs were already in widespread use. The combined use of ATSB and LLINs was tested to see if it would substantially reduce parasite transmission by Anopheles gambiae sensu lato beyond use of LLINs alone. METHODS: A 2-day field experiment was conducted to determine the number of mosquitoes feeding on natural sugar versus those feeding on bait stations containing attractive sugar bait without toxin (ASB)-but with food dye. This was done each month in seven random villages from April to December 2016. In the following year, in seven treatment villages from May to December 2017, two ATSB bait stations containing the insecticide dinotefuran were placed on the outer walls of each building. Vector population density was evaluated monthly by CDC UV light traps, malaise traps, pyrethrum spray (PSCs) and human landing catches (HLCs). Female samples of the catch were tested for age by examination of the ovarioles in dissected ovaries and identification of Plasmodium falciparum sporozoite infection by ELISA. Entomological inoculation rates (EIR) were calculated, and reductions between treated and untreated villages were determined. RESULTS: In the 2-day experiment with ASB each month, there was a lower number of male and female mosquitoes feeding on the natural sugar sources than on the ASB. ATSB deployment reduced CDC-UV trap female catches in September, when catches were highest, were by 57.4% compared to catches in control sites. Similarly, malaise trap catches showed a 44.3% reduction of females in August and PSC catches of females were reduced by 48.7% in September. Reductions of females in HLCs were lower by 19.8% indoors and 26.3% outdoors in September. The high reduction seen in the rainy season was similar for males and reductions in population density for both males and females were > 70% during the dry season. Reductions of females with ≥ 3 gonotrophic cycles were recorded every month amounting to 97.1% in October and 100.0% in December. Reductions in monthly EIRs ranged from 77.76 to 100.00% indoors and 84.95% to 100.00% outdoors. The number of sporozoite infected females from traps was reduced by 97.83% at treated villages compared to controls. CONCLUSIONS: Attractive toxic sugar baits used against Anopheles mosquitoes in Mali drastically reduced the density of mosquitoes, the number of older females, the number of sporozoite infected females and the EIR demonstrating how ATSB significantly reduces malaria parasite transmission.


Assuntos
Anopheles , Guanidinas , Inseticidas , Controle de Mosquitos , Neonicotinoides , Nitrocompostos , Açúcares , Animais , Feminino , Mali
7.
J Theor Biol ; 455: 342-356, 2018 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-30053386

RESUMO

Chikungunya, dengue, and Zika viruses are all transmitted by Aedes aegypti and Aedes albopictus mosquito species, had been imported to Florida and caused local outbreaks. We propose a deterministic model to study the importation and local transmission of these mosquito-borne diseases. The purpose is to model and mimic the importation of these viruses to Florida via travelers, local infections in domestic mosquitoes by imported travelers, and finally non-travel related transmissions to local humans by infected local mosquitoes. As a case study, the model will be used to simulate the accumulative Zika cases in Florida. Since the disease system is driven by a continuing input of infections from outside sources, orthodox analytic methods based on the calculation of the basic reproduction number are inadequate to describe and predict their behavior. Via steady-state analysis and sensitivity analysis, effective control and prevention measures for these mosquito-borne diseases are tested.


Assuntos
Aedes/virologia , Surtos de Doenças , Modelos Biológicos , Mosquitos Vetores/virologia , Infecção por Zika virus , Zika virus , Animais , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Vírus Chikungunya , Dengue/epidemiologia , Dengue/transmissão , Vírus da Dengue , Florida/epidemiologia , Humanos , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão
8.
Am J Public Health ; 107(7): 1137-1142, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28520489

RESUMO

OBJECTIVES: To evaluate the impact of the April 2016 7.8-magnitude earthquake in Ecuador on the incidence of Zika virus (ZIKV) cases. METHODS: We used the national public health surveillance system for reportable transmissible conditions and included suspected and laboratory-confirmed ZIKV cases. We compared the number of cases before and after the earthquake in areas closer to and farther from the epicenter. RESULTS: From January to July 2016, 2234 patients suspected of having ZIKV infection were reported in both affected and control areas. A total of 1110 patients had a reverse transcription-polymerase chain reaction assay, and 159 were positive for ZIKV. The cumulative incidence of ZIKV in the affected area was 11.1 per 100 000 after the earthquake. The odds ratio of having ZIKV infection in those living in the affected area was 8.0 (95% CI = 4.4, 14.6; P < .01) compared with the control area and adjusted for age, gender, province population, and number of government health care facilities. CONCLUSIONS: A spike in ZIKV cases occurred after the earthquake. Patients in the area closest to the epicenter had a delay in seeking care.


Assuntos
Terremotos , Vigilância da População , Infecção por Zika virus/epidemiologia , Adulto , Equador/epidemiologia , Feminino , Acessibilidade aos Serviços de Saúde , Humanos , Incidência , Masculino , Zika virus/isolamento & purificação
9.
Malar J ; 16(1): 266, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673298

RESUMO

BACKGROUND: Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. METHODS: A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. RESULTS: In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, but there were no significant difference in the probability of mosquito extinction and the time when annual EIR is less than one between 50% LLIN and outdoor ATSBs; and there was no significant difference in EIR between all three interventions. A minimum of 2 months of efficacy period is needed to bring out the best possible effect of the vector control tools, and to achieve long-term mosquito reduction, a minimum of 3 months of efficacy period is needed. CONCLUSIONS: The results highlight the value of incorporating outdoor vector control into IVM as a supplement to traditional indoor practices for malaria elimination in Africa, especially in village settings of clustered houses where LLINs alone is far from sufficient.


Assuntos
Anopheles/parasitologia , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/normas , Mosquitos Vetores/parasitologia , Animais , Anopheles/fisiologia , Simulação por Computador , Feminino , Humanos , Malária/transmissão , Modelos Biológicos , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia
10.
Malar J ; 16(1): 237, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28676093

RESUMO

BACKGROUND: A neglected aspect of alien invasive plant species is their influence on mosquito vector ecology and malaria transmission. Invasive plants that are highly attractive to Anopheles mosquitoes provide them with sugar that is critical to their survival. The effect on Anopheles mosquito populations was examined through a habitat manipulation experiment that removed the flowering branches of highly attractive Prosopis juliflora from selected villages in Mali, West Africa. METHODS: Nine villages in the Bandiagara district of Mali were selected, six with flowering Prosopis juliflora, and three without. CDC-UV light traps were used to monitor their Anopheles spp. vector populations, and recorded their species composition, population size, age structure, and sugar feeding status. After 8 days, all of the flowering branches were removed from three villages and trap catches were analysed again. RESULTS: Villages where flowering branches of the invasive shrub Prosopis juliflora were removed experienced a threefold drop in the older more dangerous Anopheles females. Population density dropped by 69.4% and the species composition shifted from being a mix of three species of the Anopheles gambiae complex to one dominated by Anopheles coluzzii. The proportion of sugar fed females dropped from 73 to 15% and males from 77 to 10%. CONCLUSIONS: This study demonstrates how an invasive plant shrub promotes the malaria parasite transmission capacity of African malaria vector mosquitoes. Proper management of invasive plants could potentially reduce mosquito populations and malaria transmission.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Secas , Espécies Introduzidas , Malária Falciparum/transmissão , Prosopis/química , Animais , Carboidratos/fisiologia , Dieta , Ecossistema , Comportamento Alimentar , Feminino , Malária Falciparum/parasitologia , Masculino , Mali , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Plasmodium falciparum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA