Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 18(11): 2111-2123, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467179

RESUMO

Gene rearrangement is reported to be associated to the aggressive phenotype and poor prognosis in prostate cancer. We identified a gene fusion between a transcription repressor (BMI1) and transcriptional factor (COMMD3) in human prostate cancer. We show that COMMD3:BMI1 fusion expression is significantly increased in prostate cancer disease in an order: normal tissue < primary < metastatic tumors (Mets). Although elevated TMPRSS-ERG/ETV fusion is reported in prostate cancer, we identified a subtype of Mets exhibiting low TMPRSS:ETV and high COMMD3:BMI1 We delineated the mechanism and function of COMMD3 and COMMD3:BMI1 in prostate cancer. We show that COMMD3 level is elevated in prostate cancer cell models, PDX models (adenocarcinoma, NECaP), and Mets. The analysis of TCGA/NIH/GEO clinical data showed a positive correlation between increased COMMD3 expression to the disease recurrence and poor survival in prostate cancer. We show that COMMD3 drives proliferation of normal cells and promotes migration/invasiveness of neoplastic cells. We show that COMMD3:BMI1 and COMMD3 regulate C-MYC transcription and C-MYC downstream pathway. The ChIP analysis showed that COMMD3 protein is recruited at the promoter of C-MYC gene. On the basis of these data, we investigated the relevance of COMMD3:BMI1 and COMMD3 as therapeutic targets using in vitro and xenograft mouse models. We show that siRNA-mediated targeting of COMMD3:BMI1 and COMMD3 significantly decreases (i) C-MYC expression in BRD/BET inhibitor-resistant cells, (ii) proliferation/invasion in vitro, and (iii) growth of prostate cancer cell tumors in mice. The IHC analysis of tumors confirmed the targeting of COMMD3-regulated molecular pathway under in vivo conditions. We conclude that COMMD3:BMI1 and COMMD3 are potential progression biomarkers and therapeutic targets of metastatic prostate cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Análise de Sobrevida , Transcrição Gênica
2.
Clin Cancer Res ; 24(24): 6421-6432, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30087142

RESUMO

PURPOSE: Metastasis is the major cause of mortality in prostate cancer patients. Factors such as genetic makeup and race play critical role in the outcome of therapies. This study was conducted to investigate the relevance of BMI1 in metastatic prostate cancer disease in Caucasian and African-Americans. EXPERIMENTAL DESIGN: We employed race-specific prostate cancer models, clinical specimens, clinical data mining, gene-microarray, transcription-reporter assay, chromatin-immunoprecipitation (ChIP), IHC, transgenic-(tgfl/fl) zebrafish, and mouse metastasis models. RESULTS: BMI1 expression was observed to be elevated in metastatic tumors (lymph nodes, lungs, bones, liver) of Caucasian and African-American prostate cancer patients. The comparative analysis of stage III/IV tumors showed an increased BMI1 expression in African-Americans than Caucasians. TCGA and NIH/GEO clinical data corroborated to our findings. We show that BMI1 expression (i) positively correlates to metastatic (MYC, VEGF, cyclin D1) and (ii) negative correlates to tumor suppressor (INKF4A/p16, PTEN) levels in tumors. The correlation was prominent in African-American tumors. We show that BMI1 regulates the transcriptional activation of MYC, VEGF, INKF4A/p16, and PTEN. We show the effect of pharmacological inhibition of BMI1 on the metastatic genome and invasiveness of tumor cells. Next, we show the anti-metastatic efficacy of BMI1-inhibitor in transgenic zebrafish and mouse metastasis models. Docetaxel as monotherapy has poor outcome on the growth of metastatic tumors. BMI1 inhibitor as an adjuvant improved the taxane therapy in race-based in vitro and in vivo models. CONCLUSIONS: BMI1, a major driver of metastasis, represents a promising therapeutic target for treating advanced prostate cancer in patients (including those belonging to high-risk group).


Assuntos
Biomarcadores Tumorais , Negro ou Afro-Americano , Complexo Repressor Polycomb 1/genética , Neoplasias da Próstata/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Docetaxel/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Terapia de Alvo Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , População Branca , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA