Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
New Phytol ; 205(2): 869-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25209349

RESUMO

The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes.


Assuntos
Aclimatação/genética , Bryopsida/fisiologia , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Aclimatação/fisiologia , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Temperatura Baixa , Ontologia Genética , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transcriptoma
2.
BMC Evol Biol ; 14: 158, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25015729

RESUMO

BACKGROUND: The moss Physcomitrella patens (Hedw.) Bruch & Schimp. is an important experimental model system for evolutionary-developmental studies. In order to shed light on the evolutionary history of Physcomitrella and related species within the Funariaceae, we analyzed the natural genetic diversity of the Physcomitrium-Physcomitrella species complex. RESULTS: Molecular analysis of the nuclear single copy gene BRK1 reveals that three Physcomitrium species feature larger genome sizes than Physcomitrella patens and encode two expressed BRK1 homeologs (polyploidization-derived paralogs), indicating that they may be allopolyploid hybrids. Phylogenetic analyses of BRK1 as well as microsatellite simple sequence repeat (SSR) data confirm a polyphyletic origin for three Physcomitrella lineages. Differences in the conservation of mitochondrial editing sites further support hybridization and cryptic speciation within the Physcomitrium-Physcomitrella species complex. CONCLUSIONS: We propose a revised classification of the previously described four subspecies of Physcomitrella patens into three distinct species, namely Physcomitrella patens, Physcomitrella readeri and Physcomitrella magdalenae. We argue that secondary reduction of sporophyte complexity in these species is due to the establishment of an ecological niche, namely spores resting in mud and possible spore dispersal by migratory birds. Besides the Physcomitrium-Physcomitrella species complex, the Funariaceae are host to their type species, Funaria hygrometrica, featuring a sporophyte morphology which is more complex. Their considerable developmental variation among closely related lineages and remarkable trait evolution render the Funariaceae an interesting group for evolutionary and genetic research.


Assuntos
Evolução Biológica , Bryopsida/classificação , Bryopsida/genética , Clonagem Molecular , Variação Genética , Hibridização Genética , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Poliploidia , Análise de Sequência de DNA
3.
Plant Cell Rep ; 33(2): 245-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170342

RESUMO

Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chain (vl) PUFAs (≥C20) such as arachidonic acid (AA) in seven moss species. These species were established in axenic in vitro culture, as a prerequisite for comparative metabolic studies under highly standardized laboratory conditions. In the model organism Physcomitrella patens, tissue-specific differences in the fatty acid compositions between the filamentous protonema and the leafy gametophores were observed. These metabolic differences correspond with differential gene expression of fatty acid desaturase (FADS)-encoding genes in both developmental stages, as determined via microarray analyses. Depending on the developmental stage and the species, AA amounts for 6-31 %, respectively, of the total fatty acids. Subcellular localization of the corresponding FADS revealed the endoplasmic reticulum as the cellular compartment for AA synthesis. Our results show that vlPUFAs are highly abundant metabolites in mosses. Standardized cultivation techniques using photobioreactors along with the availability of the P. patens genome sequence and the high rate of homologous recombination are the basis for targeted metabolic engineering in moss. The potential of producing vlPUFAs of interest from mosses will be highlighted as a promising area in plant biotechnology.


Assuntos
Ácido Araquidônico/metabolismo , Bryopsida/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Cromatografia Gasosa , Retículo Endoplasmático/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/análise , Espectrometria de Massas , Especificidade de Órgãos , Proteínas Recombinantes de Fusão , Especificidade da Espécie
4.
BMC Plant Biol ; 12: 228, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23194461

RESUMO

BACKGROUND: The moss Physcomitrella patens contains C18- as well as C20-polyunsaturated fatty acids that can be metabolized by different enzymes to form oxylipins such as the cyclopentenone cis(+)-12-oxo phytodienoic acid. Mutants defective in the biosynthesis of cyclopentenones showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis. The initial step in this biosynthetic route is the conversion of a fatty acid hydroperoxide to an allene oxide. This reaction is catalyzed by allene oxide synthase (AOS) belonging as hydroperoxide lyase (HPL) to the cytochrome P450 family Cyp74. In this study we characterized two AOS from P. patens, PpAOS1 and PpAOS2. RESULTS: Our results show that PpAOS1 is highly active with both C18 and C20-hydroperoxy-fatty acid substrates, whereas PpAOS2 is fully active only with C20-substrates, exhibiting trace activity (~1000-fold lower kcat/KM) with C18 substrates. Analysis of products of PpAOS1 and PpHPL further demonstrated that both enzymes have an inherent side activity mirroring the close inter-connection of AOS and HPL catalysis. By employing site directed mutagenesis we provide evidence that single amino acid residues in the active site are also determining the catalytic activity of a 9-/13-AOS - a finding that previously has only been reported for substrate specific 13-AOS. However, PpHPL cannot be converted into an AOS by exchanging the same determinant. Localization studies using YFP-labeled AOS showed that PpAOS2 is localized in the plastid while PpAOS1 may be found in the cytosol. Analysis of the wound-induced cis(+)-12-oxo phytodienoic acid accumulation in PpAOS1 and PpAOS2 single knock-out mutants showed that disruption of PpAOS1, in contrast to PpAOS2, results in a significantly decreased cis(+)-12-oxo phytodienoic acid formation. However, the knock-out mutants of neither PpAOS1 nor PpAOS2 showed reduced fertility, aberrant sporophyte morphology or interrupted sporogenesis. CONCLUSIONS: Our study highlights five findings regarding the oxylipin metabolism in P. patens: (i) Both AOS isoforms are capable of metabolizing C18- and C20-derived substrates with different specificities suggesting that both enzymes might have different functions. (ii) Site directed mutagenesis demonstrated that the catalytic trajectories of 9-/13-PpAOS1 and PpHPL are closely inter-connected and PpAOS1 can be inter-converted by a single amino acid exchange into a HPL. (iii) In contrast to PpAOS1, PpAOS2 is localized in the plastid where oxylipin metabolism takes place. (iv) PpAOS1 is essential for wound-induced accumulation of cis(+)-12-oxo phytodienoic acid while PpAOS2 appears not to be involved in the process. (v) Knock-out mutants of neither AOS showed a deviating morphological phenotype suggesting that there are overlapping functions with other Cyp74 enzymes.


Assuntos
Bryopsida/enzimologia , Oxirredutases Intramoleculares/metabolismo , Óxidos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Bryopsida/genética , Clonagem Molecular , Técnicas de Inativação de Genes , Mutagênese Sítio-Dirigida
5.
Plant Biotechnol J ; 10(7): 851-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22621344

RESUMO

Protein therapeutics represent one of the most increasing areas in the pharmaceutical industry. Plants gain acceptance as attractive alternatives for high-quality and economical protein production. However, as the majority of biopharmaceuticals are glycoproteins, plant-specific N-glycosylation has to be taken into consideration. In Physcomitrella patens (moss), glyco-engineering is an applicable tool, and the removal of immunogenic core xylose and fucose residues was realized before. Here, we present the identification of the enzymes that are responsible for terminal glycosylation (α1,4 fucosylation and ß1,3 galactosylation) on complex-type N-glycans in moss. The terminal trisaccharide consisting of α1,4 fucose and ß1,3 galactose linked to N-acetylglucosamine forms the so-called Lewis A epitope. This epitope is rare on moss wild-type proteins, but was shown to be enriched on complex-type N-glycans of moss-produced recombinant human erythropoietin, while unknown from the native human protein. Via gene targeting of moss galactosyltransferase and fucosyltransferase genes, we identified the gene responsible for terminal glycosylation and were able to completely abolish the formation of Lewis A residues on the recombinant biopharmaceutical.


Assuntos
Assialoglicoproteínas/biossíntese , Biotecnologia/métodos , Bryopsida/metabolismo , Carboidratos/química , Eritropoetina/análogos & derivados , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Western Blotting , Bryopsida/enzimologia , Bryopsida/genética , Antígeno CA-19-9 , Eritropoetina/biossíntese , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Técnicas de Inativação de Genes , Glicopeptídeos/química , Glicosilação , Humanos , Lectinas/metabolismo , Dados de Sequência Molecular , Peso Molecular , Filogenia , Polissacarídeos/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
New Phytol ; 188(3): 740-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20704658

RESUMO

• Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)-12-oxo-phytodienoic acid (cis-(+)-OPDA), were isolated from the moss Physcomitrella patens. • Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13-hydroperoxy linolenic acid (13-HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12-hydroperoxy arachidonic acid (12-HPETE). • In protonema and gametophores the occurrence of cis-(+)-OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis-(+)-OPDA was detected. • Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.


Assuntos
Bryopsida/genética , Ciclopentanos/metabolismo , Genes de Plantas , Oxirredutases Intramoleculares/genética , Oxilipinas/metabolismo , Infertilidade das Plantas/genética , Ácido Araquidônico/metabolismo , Bryopsida/anatomia & histologia , Bryopsida/fisiologia , DNA Complementar/isolamento & purificação , Técnicas de Inativação de Genes , Oxirredutases Intramoleculares/isolamento & purificação , Oxirredutases Intramoleculares/metabolismo , Mutação , Proteínas Recombinantes , Especificidade por Substrato , Ácido alfa-Linolênico/metabolismo
7.
J Hazard Mater ; 308: 343-54, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26852210

RESUMO

The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05-0.06 mmolg(dry)(-1) and a maximal adsorption capacity of 0.93-1.25 mmolg(dry)(-1) for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Šlikely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu(2+) yielded ∼20% of Cu(I) in the form of Cu-S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu(2+).


Assuntos
Briófitas/química , Cobre/química , Monitoramento Ambiental/métodos , Adsorção , Concentração de Íons de Hidrogênio
8.
J Colloid Interface Sci ; 461: 326-334, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26407060

RESUMO

Terrestrial mosses are commonly used as bioindicators of atmospheric pollution. However, there is a lack of standardization of the biomonitoring preparation technique and the efficiency of metal adsorption by various moss species is poorly known. This is especially true for in vitro-cultivated moss clones, which are promising candidates for a standardized moss-bag technique. We studied the adsorption of copper and zinc on naturally grown Sphagnum peat moss in comparison with in vitro-cultivated Sphagnum palustre samples in order to provide their physico-chemical characterization and to test the possibility of using cloned peat mosses as bioindicators within the protocol of moss-bag technique. We demonstrate that in vitro-grown clones of S. palustre exhibit acid-base properties similar to those of naturally grown Sphagnum samples, whereas the zinc adsorption capacity of the clones is approx. twice higher than that of the samples from the field. At the same time, the field samples adsorbed 30-50% higher amount of Cu(2+) compared to that of the clones. This contrast may be related to fine differences in the bulk chemical composition, specific surface area, morphological features, type and abundance of binding sites at the cell surfaces and in the aqueous solution of natural and cloned Sphagnum. The clones exhibited much lower concentration of most metal pollutants in their tissues relative to the natural samples thus making the former better indicators of low metal loading. Overall, in vitro-produced clones of S. palustre can be considered as an adequate, environmentally benign substitution for protected natural Sphagnum sp. samples to be used in moss-bags for atmospheric monitoring.


Assuntos
Cobre/química , Monitoramento Ambiental , Prótons , Sphagnopsida/química , Zinco/química , Adsorção , Poluentes Ambientais/análise , Propriedades de Superfície
9.
Plant Cell Tissue Organ Cult ; 120(3): 1037-1049, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26321779

RESUMO

As builders and major components of peatlands, Sphagnopsida (peat mosses) are very important organisms for ecosystems and world's climate. Nowadays many Sphagnum species as well as their habitats are largely protected, while their scientific and economic relevance remains considerable. Advanced methods of in vitro cultivation provide the potential to work in a sustainable way with peat mosses and address aspects of basic research as well as biotechnological and economical topics like biomonitoring or the production of renewable substrates for horticulture (Sphagnum farming). Here, we describe the establishment of axenic in vitro cultures of the five peat moss species Sphagnum fimbriatum Wils. and Hook., Sphagnum magellanicum Brid., Sphagnum palustre L., Sphagnum rubellum Wils. and Sphagnum subnitens Russ. and Warnst. with specific focus on large-scale cultivation of S. palustre in bioreactors. Axenic, clonal cultures were established to produce high quantities of biomass under standardized laboratory conditions. For advanced production of S.palustre we tested different cultivation techniques, growth media and inocula, and analyzed the effects of tissue disruption. While cultivation on solid medium is suitable for long term storage, submerse cultivation in liquid medium yielded highest amounts of biomass. By addition of sucrose and ammonium nitrate we were able to increase the biomass by around 10- to 30-fold within 4 weeks. The morphology of in vitro-cultivated gametophores showed similar phenotypic characteristics compared to material from the field. Thus the tested culture techniques are suitable to produce S. palustre material for basic and applied research.

10.
Mol Plant ; 5(6): 1281-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22511605

RESUMO

Trans-acting small interfering RNAs (ta-siRNAs) are plant-specific siRNAs released from TAS precursor transcripts after microRNA-dependent cleavage, conversion into double-stranded RNA, and Dicer-dependent phased processing. Like microRNAs (miRNAs), ta-siRNAs direct site-specific cleavage of target RNAs at sites of extensive complementarity. Here, we show that the DICER-LIKE 4 protein of Physcomitrella patens (PpDCL4) is essential for the biogenesis of 21 nucleotide (nt) ta-siRNAs. In ΔPpDCL4 mutants, off-sized 23 and 24-nt ta-siRNAs accumulated as the result of PpDCL3 activity. ΔPpDCL4 mutants display severe abnormalities throughout Physcomitrella development, including sterility, that were fully reversed in ΔPpDCL3/ΔPpDCL4 double-mutant plants. Therefore, PpDCL3 activity, not loss of PpDCL4 function per se, is the cause of the ΔPpDCL4 phenotypes. Additionally, we describe several new Physcomitrella trans-acting siRNA loci, three of which belong to a new family, TAS6. TAS6 loci are typified by sliced miR156 and miR529 target sites and are in close proximity to PpTAS3 loci.


Assuntos
Bryopsida/enzimologia , Bryopsida/fisiologia , Mutação , Infertilidade das Plantas/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Sequência de Bases , Bryopsida/genética , Bryopsida/metabolismo , Loci Gênicos/genética , Genômica , MicroRNAs/genética , Fenótipo , RNA Interferente Pequeno/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA