Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 20(33): 10466-74, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25042203

RESUMO

The controlled crystallization of enantiomers of an organic compound (a cyclic phosphoric acid derivative) on templated micro-patterned functionalised surfaces is demonstrated. Areas where a complementary chiral thiol has been located were effective heterogeneous nucleation centres when a solution of the compound is evaporated slowly. Various organic solvents were employed, which present a challenge with respect to other examples when water is used. The solvent and the crystallization method have an important influence on the crystal growth of these compounds. When chloroform was employed, well-defined crystals grow away from the surface, whereas crystals grow in the plane from solutions in isopropanol. In both cases, nucleation is confined to the polar patterned regions of the surface, and for isopropanol growth is largely limited within the pattern, which shows the importance of surface chemistry for nucleation and growth. The apparent dependence on the enantiomer used in the latter case could imply stereo-differentiation as a result of short-range interactions (the templating monolayer is disordered, even at the nanometre scale). The size of the pattern of chiral monolayer also determines the outcome of the crystallization; 5 µm dots are most effective. Despite the low surface tension of the samples (relative to the high surface tension of water), differential solvation of the polar and hydrophobic layers of the solvents allows crystallization in the polar regions of the monolayer, therefore the polarity of the regions in which heterogeneous nucleation takes place is indeed very important. Despite the complex nature of the crystallization process, these results are an important step towards to the use of patterned surfaces for heterogeneous selective nucleation of enantiomers.

2.
Chem Sci ; 14(24): 6705-6715, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37350829

RESUMO

The cylindrical pores of track-etched membranes offer excellent environments for studying the effects of confinement on crystallization as the pore diameter is readily varied and the anisotropic morphologies can direct crystal orientation. However, the inability to image individual crystals in situ within the pores in this system has prevented many of the underlying mechanisms from being characterized. Here, we study the crystallization of calcium sulfate within track-etched membranes and reveal that oriented gypsum forms in 200 nm diameter pores, bassanite in 25-100 nm pores and anhydrite in 10 nm pores. The crystallization pathways are then studied by coating the membranes with an amorphous titania layer prior to mineralization to create electron transparent nanotubes that protect fragile precursor materials. By visualizing the evolutionary pathways of the crystals within the pores we show that the product single crystals derive from multiple nucleation events and that orientation is determined at early reaction times. Finally, the transformation of bassanite to gypsum within the membrane pores is studied using experiment and potential mean force calculations and is shown to proceed by localized dissolution/reprecipitation. This work provides insight into the effects of confinement on crystallization processes, which is relevant to mineral formation in many real-world environments.

3.
Chemistry ; 18(50): 15984-93, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136132

RESUMO

A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single-crystal X-ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self-assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two-dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl(3) or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA