Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(11): 7121-7138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34431209

RESUMO

In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.


Assuntos
Citrus , Rhizobiaceae , Biofilmes , Citrus/microbiologia , Liberibacter , Doenças das Plantas/microbiologia , Rhizobiaceae/genética
2.
Sci Rep ; 14(1): 12272, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806562

RESUMO

Recently, Lactobacillus johnsonii N6.2-derived extracellular vesicles (EVs) were shown to reduce apoptosis in human beta cell lines and stimulate insulin secretion in human islets. Our goal was to identify a physiologically relevant environmental condition that induces a hypervesiculation phenotype in L. johnsonii N6.2 and to evaluate if transcriptional changes are involved in this process. Culturing this strain in the presence of 0.2% bovine bile, which mimics a stressor encountered by the bacterium in the small intestine, resulted in approximately a 100-fold increase in EVs relative to cells grown in media without bile. Whole transcriptome analysis of cells grown with bile revealed upregulation of several peptidoglycan hydrolases as well as several genes involved in fatty acid utilization. These results suggest that the hypervesiculation phenotype may be the result of increased cell wall turnover combined with increased accumulation of phospholipids, in agreement with our previous proteomic and lipidomics results. Additionally, EVs isolated from L. johnsonii N6.2 grown in presence of bile maintained their immunomodulatory properties in host-derived ßlox5 pancreatic and THP-1 macrophage cell lines. Our findings suggest that in L. johnsonii N6.2 vesiculogenesis is significantly impacted by the expression of cell wall modifying enzymes and proteins utilized for exogenous fatty acid uptake that are regulated at the transcriptional level. Furthermore, this data suggests that vesiculogenesis could be stimulated in vivo using small molecules thereby maximizing the beneficial interactions between bacteria and their hosts.


Assuntos
Bile , Vesículas Extracelulares , Lactobacillus johnsonii , Vesículas Extracelulares/metabolismo , Humanos , Lactobacillus johnsonii/metabolismo , Bile/metabolismo , Animais , Linhagem Celular , Bovinos , Células THP-1 , Parede Celular/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA