Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 116(3): 454-468, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30665695

RESUMO

Magnetically sensitive ion channels would allow researchers to better study how specific brain cells affect behavior in freely moving animals; however, recent reports of "magnetogenetic" ion channels based on biogenic ferritin nanoparticles have been questioned because known biophysical mechanisms cannot explain experimental observations. Here, we reproduce a weak magnetically mediated calcium response in HEK cells expressing a previously published TRPV4-ferritin fusion protein. We find that this magnetic sensitivity is attenuated when we reduce the temperature sensitivity of the channel but not when we reduce the mechanical sensitivity of the channel, suggesting that the magnetic sensitivity of this channel is thermally mediated. As a potential mechanism for this thermally mediated magnetic response, we propose that changes in the magnetic entropy of the ferritin particle can generate heat via the magnetocaloric effect and consequently gate the associated temperature-sensitive ion channel. Unlike other forms of magnetic heating, the magnetocaloric mechanism can cool magnetic particles during demagnetization. To test this prediction, we constructed a magnetogenetic channel based on the cold-sensitive TRPM8 channel. Our observation of a magnetic response in cold-gated channels is consistent with the magnetocaloric hypothesis. Together, these new data and our proposed mechanism of action provide additional resources for understanding how ion channels could be activated by low-frequency magnetic fields.


Assuntos
Entropia , Ativação do Canal Iônico , Campos Magnéticos , Canais de Cátion TRPV/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes de Fusão/metabolismo
2.
PLoS One ; 14(10): e0222401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574085

RESUMO

Many animals are able to sense the earth's magnetic field, including varieties of arthropods and members of all major vertebrate groups. While the existence of this magnetic sense is widely accepted, the mechanism of action remains unknown. Building from recent work on synthetic magnetoreceptors, we propose a new model for natural magnetosensation based on the rotating magnetocaloric effect (RME), which predicts that heat generated by magnetic nanoparticles may allow animals to detect features of the earth's magnetic field. Using this model, we identify the conditions for the RME to produce physiological signals in response to the earth's magnetic field and suggest experiments to distinguish between candidate mechanisms of magnetoreception.


Assuntos
Artrópodes/fisiologia , Campos Magnéticos , Orientação/fisiologia , Vertebrados/fisiologia , Animais , Comportamento Animal/fisiologia , Planeta Terra , Magnetismo , Fenômenos Físicos , Sensação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA