Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 128(5): 1468-9, 2006 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16448115

RESUMO

A novel approach of photoinduced phase separation has been demonstrated with a photolabile anionic surfactant, mixed with an inert nonionic surfactant in the presence of salting-out electrolyte. Breakdown of the photolyzable surfactant results in hydrophobic photoproducts, which are emulsified by the remaining inert surfactant; added electrolyte resolves the emulsion into macroscopic oily and aqueous phases. The initial micellar systems can disperse an insoluble additive marker dye (shown), which may be spatially segregated from the aqueous environment by the action of UV light.

2.
Planta ; 221(1): 123-34, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15565289

RESUMO

The surface properties of the plant cuticle play a crucial role in plant-pathogen interactions and the retention and penetration of agriculturally important chemicals. This paper describes the use of X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (ToF-SIMS), tapping-mode atomic force microscopy (TM-AFM) and scanning electron microscopy (SEM) to determine surface-specific chemical and material properties of the adaxial surface of Prunus laurocerasus L. leaves. XPS data, derived from the uppermost few nanometres (< 10 nm) of the leaf surface, were consistent with the wax components and functionality known to be present within the waxes. ToF-SIMS provided molecular speciation from the outermost monolayer of the leaf surface, indicating the importance of a family of acetates with chain lengths ranging from C20 to C34. The presence of alkanes with C29 and C31 chain lengths was also confirmed. SEM and TM-AFM topography images revealed a textured granular surface, while simultaneously recorded AFM phase images revealed heterogeneous material properties at the nanoscale. The relevance of these data to plant cuticle development, allelochemistry and agrochemical delivery is discussed.


Assuntos
Folhas de Planta/química , Folhas de Planta/ultraestrutura , Prunus/química , Prunus/ultraestrutura , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Espectrometria de Massa de Íon Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA