Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971386

RESUMO

Among all approaches in molecular imaging, the combination of near-infrared fluorescence imaging (NIRF) with radioisotopic imaging (PET or SPECT) allows one to benefit from the advantages of each of the imaging techniques, which are very complementary and of comparable sensitivity. To this end, the construction of monomolecular multimodal probes (MOMIP) has made it possible to combine the two imaging modalities within the same molecule, thus limiting the number of bioconjugation sites and yielding more homogeneous conjugates compared with those prepared through sequential conjugation. However, in order to optimize the bioconjugation strategy and, at the same time, the pharmacokinetic and biodistribution properties of the resulting imaging agent, a site-specific approach may be preferred. To further investigate this hypothesis, random and glycan-based site-specific bioconjugation approaches were compared thanks to a SPECT/NIRF bimodal probe based on an aza-BODIPY fluorophore. The overall experiments conducted in vitro and in vivo on HER2-expressing tumors demonstrated a clear superiority of the site-specific approach to improve affinity, specificity, and biodistribution of the bioconjugates.

2.
Mol Pharm ; 20(7): 3613-3622, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307296

RESUMO

Noninvasive imaging of idiopathic pulmonary fibrosis (IPF) remains a challenge. The aim of this study was to develop an antibody-based radiotracer targeting Lysyl Oxidase-like 2 (LOXL2), an enzyme involved in the fibrogenesis process, for SPECT/CT imaging of pulmonary fibrosis. The bifunctional chelator DOTAGA-PEG4-NH2 was chemoenzymatically conjugated to the murine antibody AB0023 using microbial transglutaminase, resulting in a degree of labeling (number of chelators per antibody) of 2.3. Biolayer interferometry confirmed that the binding affinity of DOTAGA-AB0023 to LOXL2 was preserved with a dissociation constant of 2.45 ± 0.04 nM. DOTAGA-AB0023 was then labeled with 111In and in vivo experiments were carried out in a mice model of progressive pulmonary fibrosis induced by intratracheal administration of bleomycin. [111In]In-DOTAGA-AB0023 was injected in three groups of mice (control, fibrotic, and treated with nintedanib). SPECT/CT images were recorded over 4 days p.i. and an ex vivo biodistribution study was performed by gamma counting. A significant accumulation of the tracer in the lungs of the fibrotic mice was observed at D18 post-bleomycin. Interestingly, the tracer uptake was found selectively upregulated in fibrotic lesions observed on CT scans. Images of mice that received the antifibrotic drug nintedanib from D8 up to D18 showed a decrease in [111In]In-DOTAGA-AB0023 lung uptake associated with a decrease in pulmonary fibrosis measured by CT scan. In conclusion, we report the first radioimmunotracer targeting the protein LOXL2 for nuclear imaging of IPF. The tracer showed promising results in a preclinical model of bleomycin-induced pulmonary fibrosis, with high lung uptake in fibrotic areas, and accounted for the antifibrotic activity of nintedanib.


Assuntos
Fibrose Pulmonar Idiopática , Proteína-Lisina 6-Oxidase , Animais , Camundongos , Proteína-Lisina 6-Oxidase/metabolismo , Distribuição Tecidual , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Pulmão/metabolismo , Fibrose , Tomografia Computadorizada de Emissão de Fóton Único , Bleomicina , Anticorpos/metabolismo
3.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298806

RESUMO

In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two Scabiosa L. species, S. caucasica M. Bieb. and S. ochroleuca L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-xylopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.


Assuntos
Caprifoliaceae , Dipsacaceae , Ácido Oleanólico , Saponinas , Triterpenos , Animais , Camundongos , Glicosídeos/farmacologia , Glicosídeos/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Saponinas/química , Caprifoliaceae/química , Triterpenos/farmacologia , Triterpenos/química
4.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499246

RESUMO

Cancer is a major cause of death worldwide and especially in high- and upper-middle-income countries. Despite recent progress in cancer therapies, such as chimeric antigen receptor T (CAR-T) cells or antibody-drug conjugate (ADC), new targets expressed by the tumor cells need to be identified in order to selectively drive these innovative therapies to tumors. In this context, IL-1RAP recently showed great potential to become one of these new targets for cancer therapy. IL-1RAP is highly involved in the inflammation process through the interleukins 1, 33, and 36 (IL-1, IL-33, IL-36) signaling pathways. Inflammation is now recognized as a hallmark of carcinogenesis, suggesting that IL-1RAP could play a role in cancer development and progression. Furthermore, IL-1RAP was found overexpressed on tumor cells from several hematological and solid cancers, thus confirming its potential involvement in carcinogenesis. This review will first describe the structure and genetics of IL-1RAP as well as its role in tumor development. Finally, a focus will be made on the therapies based on IL-1RAP targeting, which are now under preclinical or clinical development.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Interleucina-1
5.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293532

RESUMO

The human leucine-rich repeat-containing protein 15 (LRRC15) is a membrane protein identified as a marker of CAF (cancer-associated fibroblast) cells whose overexpression is positively correlated with cancer grade and outcome. Nuclear molecular imaging (i.e., SPECT and PET) to track LRRC15 expression could be very useful in guiding further therapeutic strategies. In this study, we developed an ScFv mouse phage-display library to obtain small fragment antibodies against human LRRC15 for molecular imaging purposes. Mice were immunized with recombinant human LRRC15 (hLRRC15), and lymph node cells were harvested for ScFv (single-chain variable fragment) phage-display analysis. The built library was used for panning on cell lines with constitutive or induced expression after transfection. The choice of best candidates was performed by screening various other cell lines, using flow cytometry. The selected candidates were reformatted into Cys-ScFv or Cys-diabody by addition of cysteine, and cloned in mammalian expression vectors to obtain batches of small fragments that were further used in site-specific radiolabeling tests. The obtained library was 1.2 × 107 cfu/µg with an insertion rate >95%. The two panning rounds performed on cells permittedenrichment of 2 × 10−3. Screening with flow cytometry allowed us to identify 28 specific hLRRC15 candidates. Among these, two also recognized murine LRCC15 and were reformatted into Cys-ScFv and Cys-diabody. They were expressed transiently in a mammalian system to obtain 1.0 to 4.5 mg of Cys fragments ready for bioconjugation and radiolabeling. Thus, in this paper, we demonstrate the relevance of the phage-display ScFv library approach for the fast-track development of small antibodies for imaging and/or immunotherapy purposes.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Humanos , Camundongos , Animais , Biblioteca de Peptídeos , Cisteína , Leucina , Ensaio de Imunoadsorção Enzimática , Proteínas de Membrana , Bacteriófagos/metabolismo , Mamíferos/metabolismo
6.
Am J Respir Cell Mol Biol ; 64(2): 235-246, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253593

RESUMO

Pulmonary fibrosis is a progressive lung disease characterized by myofibroblast accumulation and excessive extracellular matrix deposition. We sought to investigate the role of FKBP13 (13-kD FK506-binding protein), an endoplasmic reticulum-resident molecular chaperone, in various forms of pulmonary fibrosis. We first characterized the gene and protein expression of FKBP13 in lung biopsy specimens from 24 patients with idiopathic pulmonary fibrosis and 17 control subjects. FKBP13 expression was found to be elevated in the fibrotic regions of idiopathic pulmonary fibrosis lung tissues and correlated with declining forced vital capacity and dyspnea severity. FKBP13 expression was also increased in lung biopsy specimens of patients with hypersensitivity pneumonitis, rheumatoid arthritis, and sarcoidosis-associated interstitial lung disease. We next evaluated the role of this protein using FKBP13-/- mice in a bleomycin model of pulmonary fibrosis. Animals were assessed for lung function and histopathology at different stages of lung injury including the inflammatory (Day 7), fibrotic (Day 21), and resolution (Day 50) phases. FKBP13-/- mice showed increased infiltration of inflammatory cells and cytokines at Day 7, increased lung elastance and fibrosis at Day 21, and impaired resolution of fibrosis at Day 50. These changes were associated with an increased number of cells that stained positive for TUNEL and cleaved caspase 3 in the FKBP13-/- lungs, indicating a heightened cellular sensitivity to bleomycin. Our findings suggest that FKBP13 is a potential biomarker for severity of interstitial lung diseases and that it has a biologically relevant role in protecting mice against bleomycin-induced injury, inflammation, and fibrosis.


Assuntos
Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Proteínas de Ligação a Tacrolimo/metabolismo , Regulação para Cima/fisiologia , Animais , Biomarcadores/metabolismo , Biópsia/métodos , Bleomicina/efeitos adversos , Citocinas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Regulação para Cima/efeitos dos fármacos
7.
Int J Cancer ; 148(12): 3019-3031, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33506516

RESUMO

The presence of an inactivating heat shock protein 110 (HSP110) mutation in colorectal cancers has been correlated with an excellent prognosis and with the ability of HSP110 to favor the formation of tolerogenic (M2-like) macrophages. These clinical and experimental results suggest a potentially powerful new strategy against colorectal cancer: the inhibition of HSP110. In this work, as an alternative to neutralizing antibodies, Nanofitins (scaffold ~7 kDa proteins) targeting HSP110 were isolated from the screening of a synthetic Nanofitin library, and their capacity to bind (immunoprecipitation, biolayer interferometry) and to inhibit HSP110 was analyzed in vitro and in vivo. Three Nanofitins were found to inhibit HSP110 chaperone activity. Interestingly, they share a high degree of homology in their variable domain and target the peptide-binding domain of HSP110. In vitro, they inhibited the ability of HSP110 to favor M2-like macrophages. The Nanofitin with the highest affinity, A-C2, was studied in the CT26 colorectal cancer mice model. Our PET/scan experiments demonstrate that A-C2 may be localized within the tumor area, in accordance with the reported HSP110 abundance in the tumor microenvironment. A-C2 treatment reduced tumor growth and was associated with an increase in immune cells infiltrating the tumor and particularly cytotoxic macrophages. These results were confirmed in a chicken chorioallantoic membrane tumor model. Finally, we showed the complementarity between A-C2 and an anti-PD-L1 strategy in the in vivo and in ovo tumor models. Overall, Nanofitins appear to be promising new immunotherapeutic lead compounds.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Proteínas de Choque Térmico HSP110/antagonistas & inibidores , Macrófagos/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Biblioteca de Peptídeos , Tomografia por Emissão de Pósitrons , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Thorax ; 76(9): 895-906, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33859055

RESUMO

RATIONALE: Extracellular vesicles (EVs) are small lipid vesicles, and EV-coupled microRNAs (miRNAs) are important modulators of biological processes. Fibrocytes are circulating bone marrow-derived cells that migrate into the injured lungs and contribute to fibrogenesis. The question of whether EV-coupled miRNAs derived from fibrocytes are able to regulate pulmonary fibrosis has not been addressed yet. METHODS: Pulmonary fibrosis was induced in rats by intratracheal administration of an adenoviral gene vector encoding active transforming growth factor-ß1 (TGF-ß1) or control vector. Primary fibrocytes and fibroblasts were cultured from rat lungs and were sorted by anti-CD45 magnetic beads. Human circulating fibrocytes and fibrocytes in bronchoalveolar lavage fluid (BALF) were isolated by fibronectin-coated dishes. Fibrocytes were cultured on different stiffness plates or decellularised lung scaffolds. We also determined the effects of extracellular matrix (ECM) and recombinant TGF-ß1 on the cellular and EV-coupled miRNA expression of fibrocytes. RESULTS: The EVs of fibrocytes derived from fibrotic lungs significantly upregulated the expression of col1a1 of fibroblasts. Culturing on rigid plates or fibrotic decellularised lung scaffolds increased miR-21-5 p expression compared with soft plates or normal lung scaffolds. Dissolved ECM collected from fibrotic lungs and recombinant TGF-ß1 increased miR-21-5 p expression on fibrocytes, and these effects were attenuated on soft plates. Fibrocytes from BALF collected from fibrotic interstitial pneumonia patients showed higher miR-21-5 p expression than those from other patients. CONCLUSIONS: Our results indicate that ECM contributes to fibrogenesis through biomechanical and biochemical effects on miRNA expression in fibrocytes.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Vesículas Extracelulares/metabolismo , Humanos , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima
9.
Eur J Nucl Med Mol Imaging ; 48(10): 3058-3074, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33580818

RESUMO

PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor outcome and limited therapeutic options. Imaging of IPF is limited to high-resolution computed tomography (HRCT) which is often not sufficient for a definite diagnosis and has a limited impact on therapeutic decision and patient management. Hypoxia of the lung is a significant feature of IPF but its role on disease progression remains elusive. Thus, the aim of our study was to evaluate hypoxia imaging with [18F]FMISO as a predictive biomarker of disease progression and therapy efficacy in preclinical models of lung fibrosis in comparison with [18F]FDG. METHODS: Eight-week-old C57/BL6 mice received an intratracheal administration of bleomycin (BLM) at day (D) 0 to initiate lung fibrosis. Mice received pirfenidone (300 mg/kg) or nintedanib (60 mg/kg) by daily gavage from D9 to D23. Mice underwent successive PET/CT imaging at several stages of the disease (baseline, D8/D9, D15/D16, D22/D23) with [18F]FDG and [18F]FMISO. Histological determination of the lung expression of HIF-1α and GLUT-1 was performed at D23. RESULTS: We demonstrate that mean lung density on CT as well as [18F]FDG and [18F]FMISO uptakes are upregulated in established lung fibrosis (1.4-, 2.6- and 3.2-fold increase respectively). At early stages, lung areas with [18F]FMISO uptake are still appearing normal on CT scans and correspond to areas which will deteriorate towards fibrotic lesions at later timepoints. Nintedanib and pirfenidone dramatically and rapidly decreased mean lung density on CT as well as [18F]FDG and [18F]FMISO lung uptakes (pirfenidone: 1.2-, 2.9- and 2.6-fold decrease; nintedanib: 1.2-, 2.3- and 2.5-fold decrease respectively). Early [18F]FMISO lung uptake was correlated with aggressive disease progression and better nintedanib efficacy. CONCLUSION: [18F]FMISO PET imaging is a promising tool to early detect and monitor lung fibrosis progression and therapy efficacy.


Assuntos
Fluordesoxiglucose F18 , Fibrose Pulmonar Idiopática , Animais , Biomarcadores , Progressão da Doença , Humanos , Hipóxia , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Camundongos , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
10.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502225

RESUMO

Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.


Assuntos
Biomarcadores/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Fibrose Pulmonar Idiopática/tratamento farmacológico , Doenças Pulmonares Intersticiais/tratamento farmacológico , Animais , Progressão da Doença , Proteínas de Choque Térmico/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Terapia de Alvo Molecular
11.
Eur Respir J ; 55(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32165401

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a complex disease of unknown aetiology, which makes drug development challenging. Single administration of bleomycin directly to the lungs of mice is a widely used experimental model for studying pulmonary fibrogenesis and evaluating the effect of therapeutic antifibrotic strategies. The model works by inducing an early inflammatory phase, which transitions into fibrosis after 5-7 days. This initial inflammation makes therapeutic timing crucial. To accurately assess antifibrotic efficacy, the intervention should inhibit fibrosis without impacting early inflammation.Studies published between 2008 and 2019 using the bleomycin model to investigate pulmonary fibrosis were retrieved from PubMed, and study characteristics were analysed. Intervention-based studies were classified as either preventative (starting <7 days after bleomycin installation) or therapeutic (>7 days). In addition, studies were cross-referenced with current major clinical trials to assess the availability of preclinical rationale.A total of 976 publications were evaluated. 726 investigated potential therapies, of which 443 (61.0%) were solely preventative, 166 (22.9%) were solely therapeutic and 105 (14.5%) were both. Of the 443 preventative studies, only 70 (15.8%) characterised inflammation during the model's early inflammatory phase. In the reported 145 IPF clinical trials investigating 93 compounds/combinations, only 25 (26.9%) interventions had any preclinical data on bleomycin available on PubMed.Since 2008, we observed a shift (from <5% to 37.4%) in the number of studies evaluating drugs in the therapeutic setting in the bleomycin model. While this shift is encouraging, further characterisation of early inflammation and appropriate preclinical therapeutic testing are still needed. This will facilitate fruitful drug development in IPF, and more therapeutic strategies for patients with this devastating disease.


Assuntos
Bleomicina , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática , Animais , Fibrose , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Camundongos
12.
Eur Respir J ; 55(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32184320

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterised by myofibroblast proliferation and abnormal extracellular matrix accumulation in the lungs. Transforming growth factor (TGF)-ß1 initiates key profibrotic signalling involving the SMAD pathway and the small heat shock protein B5 (HSPB5). Tripartite motif-containing 33 (TRIM33) has been reported to negatively regulate TGF-ß/SMAD signalling, but its role in fibrogenesis remains unknown. The objective of this study was to elucidate the role of TRIM33 in IPF. METHODS: TRIM33 expression was assessed in the lungs of IPF patients and rodent fibrosis models. Bone marrow-derived macrophages (BMDM), primary lung fibroblasts and 3D lung tissue slices were isolated from Trim33-floxed mice and cultured with TGF-ß1 or bleomycin (BLM). Trim33 expression was then suppressed by adenovirus Cre recombinase (AdCre). Pulmonary fibrosis was evaluated in haematopoietic-specific Trim33 knockout mice and in Trim33-floxed mice that received AdCre and BLM intratracheally. RESULTS: TRIM33 was overexpressed in alveolar macrophages and fibroblasts in IPF patients and rodent fibrotic lungs. Trim33 inhibition in BMDM increased TGF-ß1 secretion upon BLM treatment. Haematopoietic-specific Trim33 knockout sensitised mice to BLM-induced fibrosis. In primary lung fibroblasts and 3D lung tissue slices, Trim33 deficiency increased expression of genes downstream of TGF-ß1. In mice, AdCre-Trim33 inhibition worsened BLM-induced fibrosis. In vitro, HSPB5 was able to bind directly to TRIM33, thereby diminishing its protein level and TRIM33/SMAD4 interaction. CONCLUSION: Our results demonstrate a key role of TRIM33 as a negative regulator of lung fibrosis. Since TRIM33 directly associates with HSPB5, which impairs its activity, inhibitors of TRIM33/HSPB5 interaction may be of interest in the treatment of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Fibroblastos , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fatores de Transcrição
13.
Curr Opin Pulm Med ; 26(5): 429-435, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32769673

RESUMO

PURPOSE OF REVIEW: Pulmonary fibrosis is a chronic and progressive lung disease involving unclear pathological mechanisms. The present review presents and discusses the major and recent advances in our knowledge of the pathogenesis of lung fibrosis. RECENT FINDINGS: The past months have deepened our understanding on the cellular actors of fibrosis with a better characterization of the abnormal lung epithelial cells observed during lung fibrosis. Better insight has been gained into fibroblast biology and the role of immune cells during fibrosis. Mechanistically, senescence appears as a key driver of the fibrotic process. Extracellular vesicles have been discovered as participating in the impaired cellular cross-talk during fibrosis and deeper understanding has been made on developmental signaling in lung fibrosis. SUMMARY: This review emphasizes the contribution of different cell types and mechanisms during pulmonary fibrosis, highlights new insights for identification of potential therapeutic strategies, and underlines where future research is needed to answer remaining open questions.


Assuntos
Fibroblastos/fisiologia , Doenças Pulmonares Intersticiais/complicações , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/fisiopatologia , Comunicação Celular , Senescência Celular , Matriz Extracelular , Vesículas Extracelulares/fisiologia , Humanos , Pulmão/patologia , Fibrose Pulmonar/imunologia , Mucosa Respiratória , Transdução de Sinais
14.
Inorg Chem ; 59(2): 1306-1314, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31909995

RESUMO

In this study, an original aza-BODIPY system comprising two Gd3+ complexes has been designed and synthesized for magnetic resonance imaging/optical imaging applications, by functionalization of the boron center. This strategy enabled the obtainment of a positively charged bimodal probe, which displays an increased water solubility, optimized photophysical properties in the near-infrared region, and very promising relaxometric properties. The absorption and emission wavelengths are 705 and 741 nm, respectively, with a quantum yield of around 10% in aqueous media. Moreover, the system does not produce singlet oxygen upon excitation, which would be toxic for tissues. The relaxivity obtained is high at intermediate fields (16.1 mM-1 s-1 at 20 MHz and 310 K) and competes with that of bigger or more rigid systems. A full relaxometric and 17O NMR study and fitting of the data using the Lipari-Szabo approach showed that this high relaxivity can be explained by the size of the system and the presence of some small aggregates. These optimized photophysical and relaxometric properties highlight the potential use of such systems for future bimodal imaging studies.

15.
Thorax ; 74(5): 455-465, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808717

RESUMO

BACKGROUND: The role of mast cells accumulating in idiopathic pulmonary fibrosis (IPF) lungs is unknown. OBJECTIVES: We investigated the effect of fibrotic extracellular matrix (ECM) on mast cells in experimental and human pulmonary fibrosis. RESULTS: In IPF lungs, mast cell numbers were increased and correlated with disease severity (control vs 60%90% vs 60%90% vs FVC<60%, mean difference=-268.6, 95% CI of difference -441.0 to -96.17, p=0.0007). Plasma tryptase levels were increased in IPF and negatively correlated with FVC (control vs FVC<60%, mean difference=-17.12, 95% CI of difference -30.02 to -4.22, p=0.006: correlation curves R=-0.045, p=0.025). In a transforming growth factor (TGF)-ß1-induced pulmonary fibrosis model, chymase-positive and tryptase-positive mast cells accumulated in fibrotic lung. Lung tissue was decellularised and reseeded with bone marrow or peritoneum-derived mast cells; cells on fibrotic ECM released more TGF-ß1 compared with normal ECM (active TGF-ß1: bone marrow-derived mast cell (BMMC)-DL vs BMMC-TGF-ß1 p=0.0005, peritoneal mast cell (PMC)-DL vs PMC-TGF-ß1 p=0.0003, total TGF-ß1: BMMC-DL vs BMMC-TGF-ß1 p=0.013, PMC-DL vs PMC-TGF-ß1 p=0.001). Mechanical stretch of lungs caused mast cell degranulation; mast cell stabilisers inhibited degranulation (histamine: cont vs doxantrazole p=0.004, ß-hexosaminidase: cont vs doxantrazole, mean difference=1.007, 95% CI of difference 0.2700 to 1.744, p=0.007) and TGF-ß1 activation (pSmad2/Smad2: cont vs dox p=0.006). Cromoglycate attenuated pulmonary fibrosis in rats (collagen: phosphate-buffered saline (PBS) vs cromoglycate p=0.036, fibrotic area: PBS vs cromoglycate p=0.031). CONCLUSION: This study suggests that mast cells may contribute to the progression of pulmonary fibrosis.


Assuntos
Degranulação Celular , Pulmão/patologia , Mastócitos/fisiologia , Fibrose Pulmonar/metabolismo , Estresse Mecânico , Fator de Crescimento Transformador beta1/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Pulmão/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
16.
Bioconjug Chem ; 30(3): 888-897, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30742423

RESUMO

The combination of two imaging probes on the same biomolecule gives access to targeted bimodal imaging agents that can provide more accurate diagnosis, complementary information, or that may be used in different applications, such as nuclear imaging and fluorescence guided surgery. In this study, we demonstrate that dichlorotetrazine, a small, commercially available compound, can be used as a modular platform to easily assemble various imaging probes. Doubly labeled tetrazines can then be conjugated to a protein through a biorthogonal IEDDA reaction. A series of difunctionalized tetrazine compounds containing various chelating agents and fluorescent dyes was synthesized. As a proof of concept, one of these bimodal probes was conjugated to trastuzumab, previously modified with a constrained alkyne group, and the resulting dual-labeled antibody was evaluated in a mouse model, bearing a HER2-positive tumor. A significant uptake into tumor tissues was observed in vivo, by both SPECT-CT and fluorescence imaging, and confirmed ex vivo in biodistribution studies.


Assuntos
Meios de Contraste , Reação de Cicloadição , Imagem Multimodal , Animais , Corantes Fluorescentes/química , Humanos , Camundongos , Estudo de Prova de Conceito , Trastuzumab/química
17.
Bioconjug Chem ; 30(4): 1061-1066, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30615430

RESUMO

A new family of water-soluble and bioconjugatable aza-BODIPY fluorophores was designed and synthesized using a boron- functionalization strategy. These dissymmetric bis-ammonium aza-BODIPY dyes present optimal properties for a fluorescent probe; i.e., they are highly water-soluble, very stable in physiological medium; they do not aggregate in PBS, possess high quantum yield; and finally, they can be easily bioconjugated to antibodies. Preliminary in vitro and in vivo studies were performed for one of these fluorophores to image PD-L1 (Programmed Death-Ligand 1), highlighting the high potential of these new probes for future in vivo optical imaging studies.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Imagem Molecular/métodos , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Solubilidade , Água/química
18.
Am J Respir Cell Mol Biol ; 58(4): 461-470, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29115860

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-ß1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-ß1 using adenoviral (Ad) gene transfer (AdTGF-ß1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-ß1. In addition, we applied mechanical stretch to lung slices from LOXL1+/+ and LOXL1-/- mice treated with AdTGF-ß1. Lung stiffness (Young's modulus) of LOXL1-/- lung slices was significantly lower compared with LOXL1+/+ lung slices. Moreover, the release of activated TGF-ß1 after mechanical stretch was significantly lower in LOXL1-/- mice compared with LOXL1+/+ mice after AdTGF-ß1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.


Assuntos
Adenoviridae/genética , Aminoácido Oxirredutases/deficiência , Colágeno/metabolismo , Técnicas de Transferência de Genes , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/enzimologia , Fator de Crescimento Transformador beta1/genética , Adenoviridae/metabolismo , Aminoácido Oxirredutases/genética , Animais , Modelos Animais de Doenças , Módulo de Elasticidade , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Pulmão/fisiopatologia , Complacência Pulmonar , Mecanotransdução Celular , Camundongos Knockout , Receptores Pulmonares de Alongamento/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Regulação para Cima
19.
Eur Respir J ; 52(2)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29976656

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with an unknown cause. Two drugs, nintedanib and pirfenidone, have been shown to slow, but not stop, disease progression. Pulmonary hypertension (PH) is a frequent complication in IPF patients and is associated with poor prognosis. Macitentan is a dual endothelin receptor antagonist that is approved for pulmonary arterial hypertension treatment. We hypothesised that using macitentan to treat animals with pulmonary fibrosis induced by adenoviral vector encoding biologically active transforming growth factor-ß1 (AdTGF-ß1) would improve the PH caused by chronic lung disease and would limit the progression of fibrosis.Rats (Sprague Dawley) which received AdTGF-ß1 were treated by daily gavage of macitentan (100 mg·kg-1·day-1), pirfenidone (0.5% food admix) or a combination from day 14 to day 28. Pulmonary artery pressure (PAP) was measured before the rats were killed, and fibrosis was subsequently evaluated by morphometric measurements and hydroxyproline analysis.AdTGF-ß1 induced pulmonary fibrosis associated with significant PH. Macitentan reduced the increase in PAP and both macitentan and pirfenidone stopped fibrosis progression from day 14 to day 28. Macitentan protected endothelial cells from myofibroblast differentiation and apoptosis whereas pirfenidone only protected against fibroblast-to-myofibroblast differentiation. Both drugs induced apoptosis of differentiated myofibroblasts in vitro and in vivoOur results demonstrate that dual endothelin receptor antagonism was effective in both PH and lung fibrosis whereas pirfenidone only affected fibrosis.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Fibrose Pulmonar/patologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Progressão da Doença , Feminino , Humanos , Hipertensão Pulmonar/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Masculino , Miofibroblastos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Piridonas/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/farmacologia
20.
Eur Respir J ; 51(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29386344

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the lung parenchyma, causing significant morbidity through worsening dyspnoea and overall functional decline. IPF is characterised by apoptosis-resistant myofibroblasts, which are a major source for the excessive production of extracellular matrix (ECM) overtaking normal lung tissue. We sought to study the role of heat shock protein (HSP) isoforms HSP90α and HSP90ß, whose distinct roles in lung fibrogenesis remain elusive.We determined the level of circulating HSP90α in IPF patients (n=31) and age-matched healthy controls (n=9) by ELISA. The release of HSP90α and HSP90ß was evaluated in vitro in primary IPF and control lung fibroblasts and ex vivo after mechanical stretch on fibrotic lung slices from rats receiving adenovector-mediated transforming growth factor-ß1.We demonstrate that circulating HSP90α is upregulated in IPF patients in correlation with disease severity. The release of HSP90α is enhanced by the increase in mechanical stress of the fibrotic ECM. This increase in extracellular HSP90α signals through low-density lipoprotein receptor-related protein 1 (LRP1) to promote myofibroblast differentiation and persistence. In parallel, we demonstrate that the intracellular form of HSP90ß stabilises LRP1, thus amplifying HSP90α extracellular action.We believe that the specific inhibition of extracellular HSP90α is a promising therapeutic strategy to reduce pro-fibrotic signalling in IPF.


Assuntos
Matriz Extracelular/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/patologia , Miofibroblastos/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Glicoproteínas de Membrana , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA