Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 620(7973): 402-408, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532929

RESUMO

Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.


Assuntos
Anticorpos Monoclonais , Carcinoma de Células Escamosas , Transição Epitelial-Mesenquimal , Netrina-1 , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Células A549 , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores de Netrina/antagonistas & inibidores , Receptores de Netrina/deficiência , Receptores de Netrina/genética , Netrina-1/antagonistas & inibidores , Netrina-1/deficiência , Netrina-1/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Modelos Animais de Doenças , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Metástase Neoplásica/tratamento farmacológico , Análise da Expressão Gênica de Célula Única , RNA-Seq , Molécula de Adesão da Célula Epitelial/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Crescimento Transformador beta1/farmacologia
2.
Nature ; 620(7973): 409-416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532934

RESUMO

Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.


Assuntos
Neoplasias do Endométrio , Transição Epitelial-Mesenquimal , Netrina-1 , Animais , Feminino , Humanos , Camundongos , Biópsia , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica , Netrina-1/antagonistas & inibidores , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA-Seq , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral/efeitos dos fármacos
3.
STAR Protoc ; 5(3): 103256, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141519

RESUMO

Extracellular vesicles (EVs) are secreted, cell-derived, membrane-bound compartments implicated in various diseases for their ability to influence distant targets and as carriers of biomarkers. Here, we present a protocol for separating EVs from mammalian pancreatic cancer cells and their characterization using western blot and electron microscopy. We then demonstrate how they are utilized to affect tumor development in a murine model of metastatic pancreatic cancer including a method to quantify hepatic tumor burden in histologic samples. For complete details on the use and execution of this protocol, please refer to Dudgeon et al.1.


Assuntos
Vesículas Extracelulares , Neoplasias Hepáticas , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Camundongos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Linhagem Celular Tumoral
4.
Cell Rep ; 42(11): 113369, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37922311

RESUMO

The biology of metastatic pancreatic ductal adenocarcinoma (PDAC) is distinct from that of the primary tumor due to changes in cell plasticity governed by a distinct transcriptome. Therapeutic strategies that target this distinct biology are needed. We detect an upregulation of the neuronal axon guidance molecule Netrin-1 in PDAC liver metastases that signals through its dependence receptor (DR), uncoordinated-5b (Unc5b), to facilitate metastasis in vitro and in vivo. The mechanism of Netrin-1 induction involves a feedforward loop whereby Netrin-1 on the surface of PDAC-secreted extracellular vesicles prepares the metastatic niche by inducing hepatic stellate cell activation and retinoic acid secretion that in turn upregulates Netrin-1 in disseminated tumor cells via RAR/RXR and Elf3 signaling. While this mechanism promotes PDAC liver metastasis, it also identifies a therapeutic vulnerability, as it can be targeted using anti-Netrin-1 therapy to inhibit metastasis using the Unc5b DR cell death mechanism.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Netrina-1 , Retinoides , Células Estreladas do Fígado/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/metabolismo , Receptores de Netrina , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas Proto-Oncogênicas c-ets
5.
Med Sci (Paris) ; 38(4): 351-358, 2022 Apr.
Artigo em Francês | MEDLINE | ID: mdl-35485895

RESUMO

Netrin-1, a secreted molecule that was first described for its role in guidance during embryogenesis, was then brought to light for its overexpression in a large number of aggressive cancers. Netrin-1 is a ligand of "dependence receptors". In adults, the interaction between Netrine-1 and these receptors triggers the survival, proliferation, and migration of different cell types. This will confer better survival properties to tumor cells, making them more prone to form aggressive tumors. A recently developed novel therapy aims at inhibiting the binding of Netrin-1 to these receptors in order to trigger cell death by apoptosis. This article presents a review of the functional characteristics of the Netrin-1 molecule, and the potential effects of a novel targeted therapy against Netrin-1 that could lead to very promising results in combination with conventional anti-cancer treatments.


Title: La nétrine-1, une nouvelle cible antitumorale. Abstract: La nétrine-1, une molécule sécrétée mise en évidence pour son rôle de guidage au cours de l'embryogenèse, a été également décrite pour être surexprimée dans de nombreux cancers agressifs. Elle est le ligand de récepteurs dits « à dépendance ¼, à l'origine, chez l'adulte, de la survie, de la prolifération et de la migration de différents types cellulaires, ce qui confère aux cellules cancéreuses des propriétés avantageuses leur permettant de se développer sous forme de tumeurs agressives. Une stratégie thérapeutique consiste à inhiber l'interaction de la nétrine-1 avec son récepteur, ce qui déclenche la mort des cellules par apoptose. Cet article présente une revue des caractéristiques fonctionnelles de cette molécule et les effets potentiels d'une nouvelle thérapie ciblée sur la nétrine-1, dont la combinaison avec les traitements conventionnels pourrait être des plus prometteurs.


Assuntos
Neoplasias , Netrina-1 , Movimento Celular , Proliferação de Células , Humanos , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
Acta Biomater ; 128: 222-235, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878475

RESUMO

The sublingual mucosa is an appealing route for drug administration. However, in the context of increased use of therapeutic proteins, development of protein delivery systems that will protect the protein bioactivity is needed. As proteins are fragile and complex molecules, current sublingual formulations of proteins are in liquid dosage. Yet, protein dilution and short residence time at the sublingual mucosa are the main barriers for the control of the dose that is delivered. In this work, a simple delivery scaffold based on the assembly of two polysaccharides, chitosan and hyaluronic acid, is presented. The natural polymers were assembled by the Layer-by-Layer methodology to produce a mucoadhesive and oro-dispersible freestanding membrane, shown to be innocuous for epithelial human cells. The functionalization of the membrane with proteins led to the production of a bioactive patch with efficient loading and release of proteins, and suitable mechanical properties for manipulation. Sublingual administration of the patch in mouse evidenced the absence of inflammation and an extended time of contact between the model protein ovalbumin and the mucosa compared to liquid formulation. The delivery of fluorescent ovalbumin in mouse sublingual mucosa demonstrated the penetration of the protein in the epithelium 10 min after the patch administration. Moreover, a migration assay with a chemokine incorporated into the patch showed no decrease in bioactivity of the loaded protein after enzymatic release. This study therefore provides a promising strategy to develop a sublingual protein delivery system. STATEMENT OF SIGNIFICANCE: Although the oral route is largely used for drug delivery, it has limitations for the delivery of proteins that can be degraded by pH or gastric enzymes. The sublingual route therefore appears as an interesting approach for protein administration. In this work, a simple delivery scaffold is presented based on the assembly of two polysaccharides by the Layer-by-Layer methodology to produce a mucoadhesive patch. The produced patch allowed efficient loading and release of proteins, as well as protection of their bioactivity. An extended time of contact between the protein and the mucosa compared to liquid formulation was highlighted in mouse model. This study provides a promising strategy to develop a sublingual protein delivery system.


Assuntos
Mucosa Bucal , Polímeros , Administração Sublingual , Animais , Sistemas de Liberação de Medicamentos , Camundongos , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA