Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Synchrotron Radiat ; 29(Pt 3): 711-720, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511004

RESUMO

The X-ray reflectivity technique can provide out-of-plane electron-density profiles of surfaces, interfaces, and thin films, with atomic resolution accuracy. While current methodologies require high surface flatness, this becomes challenging for naturally curved surfaces, particularly for liquid metals, due to the very high surface tension. Here, the development of X-ray reflectivity measurements with beam sizes of a few tens of micrometres on highly curved liquid surfaces using a synchrotron diffractometer equipped with a double crystal beam deflector is presented. The proposed and developed method, which uses a standard reflectivity θ-2θ scan, is successfully applied to study in situ the bare surface of molten copper and molten copper covered by a graphene layer grown in situ by chemical vapor deposition. It was found that the roughness of the bare liquid surface of copper at 1400 K is 1.25 ± 0.10 Å, while the graphene layer is separated from the liquid surface by a distance of 1.55 ± 0.08 Šand has a roughness of 1.26 ± 0.09 Å.

2.
Phys Chem Chem Phys ; 21(31): 17190-17199, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31364636

RESUMO

We investigate blended donor:acceptor (D:A) thin films of the two donors diindenoperylene (DIP) and poly(3-hexylthiophene) (P3HT) mixed with the strong acceptor 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane (F6TCNNQ) using Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PMIRRAS). For DIP:F6TCNNQ thin films we first carry out a comprehensive study of the structure as a function of the D : A mixing ratio, which guides the analysis of the PMIRRAS spectra. In particular, from the red-shift of the nitrile (C[triple bond, length as m-dash]N) stretching of F6TCNNQ in the different mixtures with DIP, we quantify the average ground-state charge-transfer (GS-CT) to be ρavg = (0.84 ± 0.04) e. The PMIRRAS data for P3HT:F6TCNNQ blended films reveal nearly the same shift of the CT-affected C[triple bond, length as m-dash]N stretching peak for this system. This points towards a very similar CT strength for the two systems. We extend the analysis to the relative intensity of the C[triple bond, length as m-dash]N to the C[double bond, length as m-dash]C stretching modes of F6TCNNQ in the mixtures with DIP and P3HT, respectively, and support it with DFT calculations for the isolated F6TCNNQ. Such comparison allows to identify the vibrational signatures of the acceptor mono-anion in P3HT:F6TCNNQ, thus indicating a much stronger, integer CT-type interactions for this system, in agreement with available optical spectroscopy data. Our findings stress the importance of a simultaneous analysis of C[triple bond, length as m-dash]N and C[double bond, length as m-dash]C stretching vibrations in F6TCNNQ, or similar quinoid systems, for a reliable picture of the nature of GS-CT interactions.

3.
J Chem Phys ; 151(16): 164706, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675857

RESUMO

Singlet exciton fission is a spin-allowed process in organic semiconductors by which one absorbed photon generates two triplet excitons. Theory predicts that singlet fission is mediated by intermolecular charge-transfer states in solid-state materials with appropriate singlet-triplet energy spacing, but direct evidence for the involvement of such states in the process has not been provided yet. Here, we report on the observation of subpicosecond singlet fission in mixed films of pentacene and perfluoropentacene. By combining transient spectroscopy measurements to nonadiabatic quantum-dynamics simulations, we show that direct excitation in the charge-transfer absorption band of the mixed films leads to the formation of triplet excitons, unambiguously proving that they act as intermediate states in the fission process.

4.
J Am Chem Soc ; 139(25): 8474-8486, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28570061

RESUMO

We present a comprehensive investigation of the charge-transfer (CT) effect in weakly interacting organic semiconductor mixtures. The donor-acceptor pair diindenoperylene (DIP) and N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4/9,10-bis(dicarboxyimide) (PDIR-CN2) has been chosen as a model system. A wide range of experimental methods was used in order to characterize the structural, optical, electronic, and device properties of the intermolecular interactions. By detailed analysis, we demonstrate that the partial CT in this weakly interacting mixture does not have a strong effect on the ground state and does not generate a hybrid orbital. We also find a strong CT transition in light absorption as well as in photo- and electroluminescence. By using different layer sequences and compositions, we are able to distinguish electronic coupling in-plane vs out-of-plane and, thus, characterize the anisotropy of the CT state. Finally, we discuss the impact of CT exciton generation on charge-carrier transport and on the efficiency of photovoltaic devices.

5.
Chem Asian J ; 18(17): e202300386, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428120

RESUMO

Perylene-based organic semiconductors are widely used in organic electronic devices. Here, we studied the ultrafast excited state dynamics after optical excitation at interfaces between the electron donor (D) diindenoperylene (DIP) and the electron acceptor (A) dicyano-perylene-bis(dicarboximide) (PDIR-CN2 ) using femtosecond time-resolved second harmonic generation (SHG) in combination with large scale quantum chemical calculations. Thereby, we varied in bilayer structures of DIP and PDIR-CN2 the interfacial molecular geometry. For an interfacial configuration which contains a edge-on geometry but also additional face-on domains an optically induced charge transfer (CT) is observed, which leads to a pronounced increase of the SHG signal intensity due to electric field induced second harmonic generation. The interfacial CT state decays within 7.5±0.7 ps, while the creation of hot CT states leads to a faster decay (5.3±0.2 ps). For the bilayer structures with mainly edge-on geometries interfacial CT formation is suppressed since π-π overlap perpendicular to the interface is missing. Our combined experimental and theoretical study provides important insights into D/A charge transfer properties, which is needed for the understanding of the interfacial photophysics of these molecules.

6.
Langmuir ; 28(33): 12275-81, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22812404

RESUMO

The development of the microelectronics industry requires a new element basis with reduced size and increased functionality. The most important components in modern microelectronic integrated circuits are passive elements. One of the key challenges in order to improve the functionality of integrated circuits is to increase the quality of passive elements composing them. In this paper we suggest a novel approach to increase the quality factor Q of inductors by the surface modification and functionalization of the metal components. Ultrasound induced surface modification of metal wires led to the formation of a porous surface structure, which further can be functionalized with magnetite nanoparticles using layer-by-layer assembly technique. The surface modification and deposition of magnetite nanoparticles was investigated with SEM, XRD, and contact angle measurements. Additionally, inductance and resistance measurements, as the main parameters determining the Q-factor of inductors, were carried out. Samples with high number of magnetic nanoparticle-polyelectrolyte bilayers demonstrate a significant increase in inductance and a slight decrease in resistance in comparison to uncoated ones. The combination of these factors led to enhancement the Q-factor of the investigated inductive elements.

7.
Adv Sci (Weinh) ; 9(36): e2204684, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36351774

RESUMO

Liquid metal catalysts have recently attracted attention for synthesizing high-quality 2D materials facilitated via the catalysts' perfectly smooth surface. However, the microscopic catalytic processes occurring at the surface are still largely unclear because liquid metals escape the accessibility of traditional experimental and computational surface science approaches. Hence, numerous controversies are found regarding different applications, with graphene (Gr) growth on liquid copper (Cu) as a prominent prototype. In this work, novel in situ and in silico techniques are employed to achieve an atomic-level characterization of the graphene adsorption height above liquid Cu, reaching quantitative agreement within 0.1 Å between experiment and theory. The results are obtained via in situ synchrotron X-ray reflectivity (XRR) measurements over wide-range q-vectors and large-scale molecular dynamics simulations based on efficient machine-learning (ML) potentials trained to first-principles density functional theory (DFT) data. The computational insight is demonstrated to be robust against inherent DFT errors and reveals the nature of graphene binding to be highly comparable at liquid Cu and solid Cu(111). Transporting the predictive first-principles quality via ML potentials to the scales required for liquid metal catalysis thus provides a powerful approach to reach microscopic understanding, analogous to the established computational approaches for catalysis at solid surfaces.

8.
Energy Environ Sci ; 15(7): 2958-2973, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35923416

RESUMO

Non-fullerene acceptors (NFAs) are excellent light harvesters, yet the origin of their high optical extinction is not well understood. In this work, we investigate the absorption strength of NFAs by building a database of time-dependent density functional theory (TDDFT) calculations of ∼500 π-conjugated molecules. The calculations are first validated by comparison with experimental measurements in solution and solid state using common fullerene and non-fullerene acceptors. We find that the molar extinction coefficient (ε d,max) shows reasonable agreement between calculation in vacuum and experiment for molecules in solution, highlighting the effectiveness of TDDFT for predicting optical properties of organic π-conjugated molecules. We then perform a statistical analysis based on molecular descriptors to identify which features are important in defining the absorption strength. This allows us to identify structural features that are correlated with high absorption strength in NFAs and could be used to guide molecular design: highly absorbing NFAs should possess a planar, linear, and fully conjugated molecular backbone with highly polarisable heteroatoms. We then exploit a random decision forest algorithm to draw predictions for ε d,max using a computational framework based on extended tight-binding Hamiltonians, which shows reasonable predicting accuracy with lower computational cost than TDDFT. This work provides a general understanding of the relationship between molecular structure and absorption strength in π-conjugated organic molecules, including NFAs, while introducing predictive machine-learning models of low computational cost.

9.
Phys Chem Chem Phys ; 13(17): 8015-23, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21448506

RESUMO

Cavitation at the solid surface normally begins with nucleation, in which defects or assembled molecules located at a liquid-solid interface act as nucleation centers and are actively involved in the evolution of cavitation bubbles. Here, we propose a simple approach to evaluate the behavior of cavitation bubbles formed under high intensity ultrasound (20 kHz, 51.3 W cm(-2)) at solid surfaces, based on sonication of patterned substrates with a small roughness (less than 3 nm) and controllable surface energy. A mixture of octadecylphosphonic acid (ODTA) and octadecanethiol (ODT) was stamped on the Si wafer coated with different thicknesses of an aluminium layer (20-500 nm). We investigated the growth mechanism of cavitation bubble nuclei and the evolution of individual pits (defects) formed under sonication on the modified surface. A new activation behavior as a function of Al thickness, sonication time, ultrasonic power and temperature is reported. In this process cooperativity is introduced, as initially formed pits further reduce the energy to form bubbles. Furthermore, cavitation on the patterns is a controllable process, where up to 40-50 min of sonication time only the hydrophobic areas are active nucleation sites. This study provides a convincing proof of our theoretical approach on nucleation.


Assuntos
Alumínio/química , Siloxanas/química , Sonicação/métodos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Organofosfonatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Sulfidrila/química , Propriedades de Superfície , Difração de Raios X
10.
J Appl Crystallogr ; 54(Pt 1): 203-210, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833648

RESUMO

Many polymorphic crystal structures of copper phthalocyanine (CuPc) have been reported over the past few decades, but despite its manifold applicability, the structure of the frequently mentioned α polymorph remained unclear. The base-centered unit cell (space group C2/c) suggested in 1966 was ruled out in 2003 and was replaced by a primitive triclinic unit cell (space group P 1). This study proves unequivocally that both α structures coexist in vacuum-deposited CuPc thin films on native silicon oxide by reciprocal space mapping using synchrotron radiation in grazing incidence. The unit-cell parameters and the space group were determined by kinematic scattering theory and provide possible molecular arrangements within the unit cell of the C2/c structure by excluded-volume considerations. In situ X-ray diffraction experiments and ex situ atomic force microscopy complement the experimental data further and provide insight into the formation of a smooth thin film by a temperature-driven downward diffusion of CuPc molecules during growth.

11.
ACS Appl Mater Interfaces ; 8(21): 13499-505, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27171402

RESUMO

Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.

13.
Ultrason Sonochem ; 18(1): 310-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20638889

RESUMO

Novel metal/semiconductor nanocomposites have been synthesized from pre-formed components by applying high intensity ultrasound irradiation. Positively and negatively charged Au nanoparticles were intercalated into mesoporous TiO(2) by sonication. The synthesized nanocomposites with implanted gold nanoparticles possess a narrow pore-size distribution around 7 nm and a large surface area of about 210 m(2)/g. The intercalation of the Au nanoparticles into the TiO(2) framework depends on the charge of the Au nanoparticles, time and amplitude of ultrasonic treatment. The experiments show that at 20 min of ultrasonic irradiation the volume fraction of the negatively charged Au nanoparticles intercalated into TiO(2) is 15%. By contrast, at the same time, 8.1% of positively charged Au nanoparticles with a diameter of about 6-7 nm enters into the TiO(2) matrix. The characterization of the samples was carried out by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, Fourier transform infrared measurements and BET analysis. The structure of TiO(2) was not considerably affected by the intercalation of the Au nanoparticles. TiO(2) doped with negatively charged Au nanoparticles presented a higher photocatalytic activity (75 wt.%) than TiO(2) loaded with positively charged Au nanoparticles (62 wt.%), because of an enlarged surface area and quantity of Au nanoparticles in titania.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Titânio/química , Ultrassom , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
14.
Adv Mater ; 23(17): 1922-34, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21337429

RESUMO

In spite of the great potential of applying high-intensity ultrasound, which enables high-temperature and high-pressure chemistry with a reactor near room temperature and ambient pressure, sonochemistry at solid surfaces is at a weak stage of understanding with regards to the development of new materials and composite nanostructures. The science towards a quantitative understanding is only now emerging. On the other hand, in many applications an ultrasonic bath is used without thinking of the mechanism. Often surfaces are exposed to ultrasound for cleaning. Since ultrasonic treatment is not an exotic process and applicable even on large scale in industrial manufacturing, controlling the process may lead to new applications making use of the specially designed surface. This review is intended to summarize recent progress in this field and to point out most promising directions of ultrasound application for the development of new materials with functional surfaces.


Assuntos
Ultrassom/métodos , Metais/química , Óxidos/química , Polímeros/química , Propriedades de Superfície
15.
ACS Appl Mater Interfaces ; 3(2): 417-25, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280665

RESUMO

Controlling cavitation at the solid surface is of increasing interest, as it plays a major role in many physical and chemical processes related to the modification of solid surfaces and formation of multicomponent nanoparticles. Here, we show a selective control of ultrasonic cavitation on metal surfaces with different hydrophobicity. By applying a microcontact printing technique we successfully formed hydrophobic/hydrophilic alternating well-defined microstructures on aluminium surfaces. Fabrication of patterned surfaces provides the unique opportunity to verify a model of heterogeneous nucleation of cavitation bubbles near the solid/water interface by varying the wettability of the surface, temperature and ultrasonic power. At the initial stage of sonication (up to 30 min), microjets and shock waves resulting from the collapsing bubbles preferably impact the hydrophobic surface, whereas the hydrophilic areas of the patterned Al remain unchanged. Longer sonication periods affect both surfaces. These findings confirm the expectation that higher contact angle causes a lower energy barrier, thus cavitation dominates at the hydrophobic surfaces. Experimental results are in good agreement with expectations from nucleation theory. This paper illustrates a new approach to ultrasound induced modification of solid surfaces resulting in the formation of foam-structured metal surfaces.


Assuntos
Alumínio/química , Gases/química , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Ultrassom , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Modelos Químicos
16.
Langmuir ; 24(17): 9747-53, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18652497

RESUMO

Multilayered Na (+)-montmorillonite clays intercalated with Au nanoparticles were synthesized by direct ultrasonic impregnation of preformed gold colloid into the clay matrix. The sonicated composite product then consists of Au nanoparticles homogeneously dispersed in the clay. The resulting clay/nano-Au composite was calcined at 800 degrees C and characterized by BET surface area analysis, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared measurements. Nearly spherical-shaped gold nanoparticles, with a size of 6 +/- 0.5 nm, are located in the pores of clay calcined at 800 degrees C. Their nanocomposites are thermally stable as was shown by thermogravimetric analysis. No aggregation of the gold nanoparticles was observed during calcination. The proposed ultrasonic intercalation approach is an universal one and can be employed for synthesis of catalytically active metal-clay nanocomposites stable at high temperatures with high dispersability of the metal nanoparticles in the clay matrix.


Assuntos
Química/métodos , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Adsorção , Silicatos de Alumínio , Argila , Metais/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas , Nitrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura , Termogravimetria/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA