Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 21(11): e51264, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32969152

RESUMO

Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs), yet the biological functions of most of them remain unknown. A particularly rich repertoire of lncRNAs found in mammalian brain and in the early embryo. We used RNA-seq and computational analysis to prioritize lncRNAs that may regulate commitment of pluripotent cells to a neuronal fate and perturbed their expression prior to neuronal differentiation. Knockdown by RNAi of two highly conserved and well-expressed lncRNAs, Reno1 (2810410L24Rik) and lnc-Nr2f1, decreased the expression of neuronal markers and led to massive changes in gene expression in the differentiated cells. We further show that the Reno1 locus forms increasing spatial contacts during neurogenesis with its adjacent protein-coding gene Bahcc1. Loss of either Reno1 or Bahcc1 leads to an early arrest in neuronal commitment, failure to induce a neuronal gene expression program, and to global reduction in chromatin accessibility at regions that are marked by the H3K4me3 chromatin mark at the onset of differentiation. Reno1 and Bahcc1 thus form a previously uncharacterized circuit required for the early steps of neuronal commitment.


Assuntos
Células-Tronco Embrionárias Murinas , RNA Longo não Codificante , Animais , Diferenciação Celular/genética , Camundongos , Neurogênese/genética , Neurônios , RNA Longo não Codificante/genética
2.
Cell Rep ; 42(10): 113168, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742186

RESUMO

Long noncoding RNAs (lncRNAs) are expressed in many brain circuits and types of neurons; nevertheless, their functional significance for normal brain functions remains elusive. Here, we study the functions in the central nervous system of Silc1, an lncRNA we have shown previously to be important for neuronal regeneration in the peripheral nervous system. We found that Silc1 is rapidly and strongly induced in the hippocampus upon exposure to novelty and is required for efficient spatial learning. Silc1 production is important for induction of Sox11 (its cis-regulated target gene) throughout the CA1-CA3 regions and proper expression of key Sox11 target genes. Consistent with its role in neuronal plasticity, Silc1 levels decline during aging and in models of Alzheimer's disease. Overall, we describe a plasticity pathway in which Silc1 acts as an immediate-early gene to activate Sox11 and induce a neuronal growth-associated transcriptional program important for learning.


Assuntos
Doença de Alzheimer , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Genes Precoces , Doença de Alzheimer/genética , Sistema Nervoso Central/metabolismo , Aprendizagem Espacial
3.
Genome Biol ; 18(1): 162, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854954

RESUMO

BACKGROUND: Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. RESULTS: We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. CONCLUSIONS: We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.


Assuntos
Sequência Conservada , Fósseis , RNA Longo não Codificante/genética , Animais , Sequência de Bases , Evolução Molecular , Expressão Gênica , Código Genético , Humanos , Mamíferos/genética , Fases de Leitura Aberta , Proteínas/genética , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA