Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 143(6): 962-71, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980793

RESUMO

The H19 locus controls fetal growth by regulating expression of several genes from the imprinted gene network (IGN). H19 is fully repressed after birth, except in skeletal muscle. Using loss-of-function H19(Δ3) mice, we investigated the function of H19 in adult muscle. Mutant muscles display hypertrophy and hyperplasia, with increased Igf2 and decreased myostatin (Mstn) expression. Many imprinted genes are expressed in muscle stem cells or satellite cells. Unexpectedly, the number of satellite cells was reduced by 50% in H19(Δ3) muscle fibers. This reduction occurred after postnatal day 21, suggesting a link with their entry into quiescence. We investigated the biological function of these mutant satellite cells in vivo using a regeneration assay induced by multiple injections of cardiotoxin. Surprisingly, despite their reduced number, the self-renewal capacity of these cells is fully retained in the absence of H19. In addition, we observed a better regeneration potential of the mutant muscles, with enhanced expression of several IGN genes and genes from the IGF pathway.


Assuntos
Redes Reguladoras de Genes , Impressão Genômica , Músculos/fisiologia , RNA Longo não Codificante/metabolismo , Regeneração/genética , Animais , Cardiotoxinas/toxicidade , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Deleção de Genes , Redes Reguladoras de Genes/efeitos dos fármacos , Impressão Genômica/efeitos dos fármacos , Hiperplasia , Hipertrofia , Masculino , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Músculos/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/patologia , RNA Longo não Codificante/genética , Regeneração/efeitos dos fármacos , Células Satélites de Músculo Esquelético/patologia
2.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239415

RESUMO

BACKGROUND: Tumor relapse constitutes a major challenge for anti-tumoral treatments, including immunotherapies. Indeed, most cancer-related deaths occur during the tumor relapse phase. METHODS: We designed a mouse model of tumor relapse in which mice transplanted with E7+ TC1 tumor cells received a single therapeutic vaccination of STxB-E7+IFNα. Unlike the complete regression observed after two vaccinations, such a treatment induced a transient shrinkage of the tumor mass, followed by a rapid tumor outgrowth. To prevent this relapse, we tested the efficacy of a local administration of IFNα together with a systemic therapy with anti-PD1 Ab. The immune response was analyzed during both the tumor regression and relapse phases. RESULTS: We show that, during the regression phase, tumors of mice treated with a single vaccination of STxB-E7 + IFNα harbor fewer activated CD8 T cells and monocytes than tumors doomed to fully regress after two vaccinations. In contrast, the systemic injection of an anti-PD1 Ab combined with the peri-tumoral injection of IFNα in this time frame promotes infiltration of activated CD8 T cells and myeloid cells, which, together, exert a high cytotoxicity in vitro against TC1 cells. Moreover, the IFNα and anti-PD1 Ab combination was found to be more efficient than IFNα or anti-PD1 used alone in preventing tumor relapse and was better able to prolong mice survival. CONCLUSIONS: Together, these results indicate that the local increase of IFNα in combination with an anti-PD1 therapy is an effective way to promote efficient and durable innate and adaptive immune responses preventing tumor relapse.


Assuntos
Interferon-alfa/metabolismo , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Humanos , Imunoterapia , Camundongos
3.
Diabetes ; 67(1): 78-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079704

RESUMO

The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and ß-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on ß-cell mass have an embryonic origin. Thus, we used Ucp2 knockout mice. We found an increased size of the pancreas in Ucp2-/- fetuses at embryonic day 16.5, associated with a higher number of α- and ß-cells. This phenotype was caused by an increase of PDX1+ progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the Ucp2-/- pancreata. Finally, administration of the antioxidant N-acetyl-l-cysteine to Ucp2-/- pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.


Assuntos
Pâncreas/enzimologia , Pâncreas/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Western Blotting , Células Cultivadas , Células Secretoras de Glucagon/metabolismo , Imuno-Histoquímica , Células Secretoras de Insulina/metabolismo , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Reação em Cadeia da Polimerase , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA