Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 31(7): 619-639, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31895004

RESUMO

Primary cilia in many cell types contain a periaxonemal subcompartment called the inversin compartment. Four proteins have been found to assemble within the inversin compartment: INVS, ANKS6, NEK8, and NPHP3. The function of the inversin compartment is unknown, but it appears to be critical for normal development, including left-right asymmetry and renal tissue homeostasis. Here we combine superresolution imaging of human RPE1 cells, a classic model for studying primary cilia in vitro, with a genetic dissection of the protein-protein binding relationships that organize compartment assembly to develop a new structural model. We observe that INVS is the core structural determinant of a compartment composed of novel fibril-like substructures, which we identify here by three-dimensional single-molecule superresolution imaging. We find that NEK8 and ANKS6 depend on INVS for localization to these fibrillar assemblies and that ANKS6-NEK8 density within the compartment is regulated by NEK8. Together, NEK8 and ANKS6 are required downstream of INVS to localize and concentrate NPHP3 within the compartment. In the absence of these upstream components, NPHP3 is redistributed within cilia. These results provide a more detailed structure for the inversin compartment and introduce a new example of a membraneless compartment organized by protein-protein interactions.


Assuntos
Cílios/metabolismo , Imageamento Tridimensional , Microscopia , Imagem Individual de Molécula , Fatores de Transcrição/metabolismo , Biomarcadores/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinesinas/metabolismo , Modelos Biológicos , Mutação/genética , Quinases Relacionadas a NIMA/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico
2.
Genetics ; 213(2): 431-447, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405990

RESUMO

A subset of cancers rely on telomerase-independent mechanisms to maintain their chromosome ends. The predominant "alternative lengthening of telomeres" pathway appears dependent on homology-directed repair (HDR) to maintain telomeric DNA. However, the molecular changes needed for cells to productively engage in telomeric HDR are poorly understood. To gain new insights into this transition, we monitored the state of telomeres during serial culture of fission yeast (Schizosaccharomyces pombe) lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). In this context, degradation of TERRA associated with the telomere in the form of R-loops drives a severe growth crisis, ultimately leading to a novel type of survivor with linear chromosomes and altered cytological telomere characteristics, including the loss of the shelterin component Rap1 (but not the TRF1/TRF2 ortholog, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective in this context, preventing the growth crisis that is otherwise triggered by degradation of telomeric R-loops in survivors with linear chromosomes. These findings suggest that upregulation of telomere-engaged TERRA, or altered recruitment of shelterin components, can support telomerase-independent telomere maintenance.


Assuntos
Proteínas de Schizosaccharomyces pombe/genética , Homeostase do Telômero/genética , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , DNA Fúngico/química , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , RNA Fúngico/química , RNA Fúngico/genética , Reparo de DNA por Recombinação/genética , Schizosaccharomyces/genética , Complexo Shelterina , Telomerase/genética
3.
FEBS Lett ; 590(23): 4159-4170, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27714790

RESUMO

We have developed a high-throughput sequencing approach that enables us to determine terminal telomere sequences from tens of thousands of individual Schizosaccharomyces pombe telomeres. This method provides unprecedented coverage of telomeric sequence complexity in fission yeast. S. pombe telomeres are composed of modular degenerate repeats that can be explained by variation in usage of the TER1 RNA template during reverse transcription. Taking advantage of this deep sequencing approach, we find that 'like' repeat modules are highly correlated within individual telomeres. Moreover, repeat module preference varies with telomere length, suggesting that existing repeats promote the incorporation of like repeats and/or that specific conformations of the telomerase holoenzyme efficiently and/or processively add repeats of like nature. After the loss of telomerase activity, this sequencing and analysis pipeline defines a population of telomeres with altered sequence content. This approach will be adaptable to study telomeric repeats in other organisms and also to interrogate repetitive sequences throughout the genome that are inaccessible to other sequencing methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Telômero/genética , Sequência de Bases , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA