Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 102(6): 4906-4912, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30904315

RESUMO

Vitamin fortification of dairy products, including fluid milk and fortified whey protein beverages, is an industry standard but can lead to the development of off-flavor compounds that are difficult to extract and detect by instrumental methods. Previous work has identified these compounds and their specific role in off-flavors in skim milk, but efficient extraction and quantification of these compounds remains a challenge. Three rapid methods (stir bar sorptive extraction, solvent-assisted stir bar sorptive extraction, and solid-phase microextraction) were compared for their ability to effectively recover vitamin degradation volatiles from fluid skim milk. The performance of the 3 methods for detecting and quantifying vitamin degradation-related volatile compounds was determined by linear regression of standard curves prepared from spiked standards of 5 vitamin degradation volatiles, the reproducibility on the same day and between days as measured by the average relative standard deviation of each standard curve, and the limits of detection and quantitation. Measurement of vitamin degradation compounds in commercial pasteurized fortified skim milks was also conducted using each method. Detection of selected vitamin degradation volatiles was linear in skim milk (0.005-200 µg/kg). Coefficient of determination values differed between methods and compounds. Within-day and between-day percentage of relative standard deviation also varied with compound and method. Limits of detection and quantitation values for all methods except solid-phase microextraction were lower than concentrations of selected volatile compounds typically found in commercial milk. Solvent-assisted stir bar sorptive extraction with a 10-mL sample volume provided the most consistent detection of selected compounds in commercial milks. Based on linearity, relative standard deviation, and limits of detection and quantitation, cyclohexane solvent-assisted stir bar sorptive extraction with 10-mL sample volume is recommended for the quantitation of vitamin degradation-related volatiles in fluid skim milk.


Assuntos
Leite/química , Vitaminas/análise , Adsorção , Animais , Aromatizantes , Pasteurização , Reprodutibilidade dos Testes , Microextração em Fase Sólida , Vitaminas/química
2.
J Dairy Sci ; 101(3): 1967-1989, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29274971

RESUMO

Gouda cheese is a washed-curd cheese that is traditionally produced from bovine milk and brined before ripening for 1 to 20 mo. In response to domestic and international demand, US production of Gouda cheese has more than doubled in recent years. An understanding of the chemical and sensory properties of Gouda cheese can help manufacturers create desirable products. The objective of this study was to determine the chemical and sensory properties of Gouda cheeses. Commercial Gouda cheeses (n = 36; 3 mo to 5 yr; domestic and international) were obtained in duplicate lots. Volatile compounds were extracted by solid-phase microextraction and analyzed by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Composition analyses included pH, proximate analysis, salt content, organic acid analysis by HPLC, and color. Flavor and texture properties were determined by descriptive sensory analysis. Focus groups were conducted to document US consumer perception followed by consumer acceptance testing (n = 149) with selected cheeses. Ninety aroma-active compounds in Gouda cheeses were detected by solid-phase microextraction/gas chromatography-olfactometry. Key aroma-active volatile compounds included diacetyl, 2- and 3-methylbutanal, 2-methylpropanal, methional, ethyl butyrate, acetic acid, butyric acid, homofuraneol, δ-decalactone, and 2-isobutyl-3-methoxypyrazine. Aged cheeses had higher organic acid concentrations, higher fat and salt contents, and lower moisture content than younger cheeses. Younger cheeses were characterized by milky, whey, sour aromatic, and diacetyl flavors, whereas aged cheeses were characterized by fruity, caramel, malty/nutty, and brothy flavors. International cheeses were differentiated by the presence of low intensities of cowy/barny and grassy flavors. Younger cheeses were characterized by higher intensities of smoothness and mouth coating, whereas aged cheeses were characterized by higher intensities of fracture and firmness. American consumers used Gouda cheese in numerous applications and stated that packaging appeal, quality, and age were more important than country of origin or nutrition when purchasing Gouda cheeses. Young and medium US cheeses ≤6 mo were most liked by US consumers. Three distinct consumer segments were identified with distinct preferences for cheese flavor and texture. Findings from this study establish key differences in Gouda cheese regarding age and origin and identify US consumer desires for this cheese category.


Assuntos
Queijo/análise , Qualidade dos Alimentos , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Olfatometria , Microextração em Fase Sólida , Estados Unidos
3.
J Dairy Sci ; 101(5): 3812-3828, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501345

RESUMO

Typical high-temperature, short-time (HTST) pasteurization encompasses a lower heat treatment and shorter refrigerated shelf life compared with ultra-pasteurization (UP) achieved by direct steam injection (DSI-UP) or indirect heat (IND-UP). A greater understanding of the effect of different heat treatments on flavor and flavor chemistry of milk is required to characterize, understand, and identify the sources of flavors. The objective of this study was to determine the differences in the flavor and volatile compound profiles of milk subjected to HTST, DSI-UP, or IND-UP using sensory and instrumental techniques. Raw skim and raw standardized 2% fat milks (50 L each) were processed in triplicate and pasteurized at 78°C for 15 s (HTST) or 140°C for 2.3 s by DSI-UP or IND-UP. Milks were cooled and stored at 4°C, then analyzed at d 0, 3, 7, and 14. Sensory attributes were determined using a trained panel, and aroma active compounds were evaluated by solid-phase micro-extraction or stir bar sorptive extraction followed by gas chromatography-mass spectrometry, gas chromatography-olfactometry, and gas chromatography-triple quad mass spectrometry. The UP milks had distinct cooked and sulfur flavors compared with HTST milks. The HTST milks had less diversity in aroma active compounds compared with UP milks. Flavor intensity of all milks decreased by d 14 of storage. Aroma active compound profiles were affected by heat treatment and storage time in both skim and 2% milk. High-impact aroma active compounds were hydrogen sulfide, dimethyl trisulfide, and methional in DSI-UP and 2 and 3-methylbutanal, furfural, 2-heptanone, 2-acetyl-1-pyrroline, 2-aminoacetophenone, benzaldehyde, and dimethyl sulfide in IND-UP. These results provide a foundation knowledge of the effect of heat treatments on flavor development and differences in sensory quality of UP milks.


Assuntos
Aromatizantes/química , Leite/química , Pasteurização/métodos , Animais , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Humanos , Odorantes/análise , Pasteurização/instrumentação , Paladar , Fatores de Tempo
4.
J Dairy Sci ; 101(6): 4906-4913, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29525312

RESUMO

Concentrations of retinol, α-tocopherol, and major carotenoids in dairy products are often determined simultaneously by liquid chromatography. These compounds have different polarity and solubility; thus, extracting them simultaneously can be difficult and inefficient. In milks with low carotenoid concentrations, the xanthophylls lutein and zeaxanthin may not be completely resolved using common extraction techniques. A simplified method was developed to optimize extraction efficiency and the limit of detection and limit of quantification (LoQ) of lutein and zeaxanthin in bovine milk without decreasing sensitivity to other vitamins or carotenoids. The developed method evaluates lutein, zeaxanthin, ß-carotene, retinol, and α-tocopherol simultaneously by ultra-high performance liquid chromatography-photodiode array detection. Common saponification temperatures (40-60°C) and concentrations of KOH in water (10-50% KOH wt/vol) were evaluated. Multiple solvents were evaluated for optimal xanthophyll extraction (diethyl ether, dichloromethane, hexane, and tetrahydrofuran) following saponification. The limit of detection and LoQ were defined as 3:1 and 10:1 signal-to-noise ratio, respectively. All experiments were performed in triplicate. The optimal saponification procedure was a concentration of 25% KOH at either 40 or 50°C. Saponified extracts solubilized in solutions containing diethyl ether had greater concentrations of lutein- than hexane- or tetrahydrofuran-based solutions, with peak areas above LoQ values. The solution containing diethyl ether solubilized similar concentrations of retinol, α-tocopherol, and ß-carotene when compared with other solutions. The proposed optimized method allows for the simultaneous determination of carotenoids from milk with increased lutein and zeaxanthin sensitivity without sacrificing recovery of retinol, α-tocopherol, and ß-carotene.


Assuntos
Ração Animal/análise , Carotenoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Leite/química , Vitaminas/análise , Xantofilas/análise , Animais , Bovinos , Luteína/análise , Vitamina A/análise , Zeaxantinas/análise , alfa-Tocoferol/análise , beta Caroteno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA