RESUMO
We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 µm deep inside living Drosophila brain.
Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Neuroimagem/métodos , Algoritmos , Animais , Animais Geneticamente Modificados , Química Encefálica , Drosophila , Desenho de Equipamento , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/instrumentação , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMO
Intermolecular carbon nanotube junctions were formed through amide linkage of amino functionalized multiwall carbon nanotubes and [Ru (dcbpy)(bpy)2](PF6)2, an inorganic metal complex. Nanotube interconnects were visualized using atomic force microscopy. Absorption and emission spectroscopy showed significant changes between starting products and the resulting ruthenium nanotube complex, indicative of successful chemical modification.