Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 20(1): 593-605, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346665

RESUMO

Atomic layer coating (ALC) is emerging as a particle engineering strategy to inhibit surface crystallization of amorphous solid dispersions (ASDs). In this study, we turn our attention to evaluating drug release behavior from ALC-coated ASDs, and begin to develop a mechanistic framework. Posaconazole/hydroxypropyl methylcellulose acetate succinate was used as a model system at both 25% and 50% drug loadings. ALC-coatings of aluminum oxide up to 40 nm were evaluated for water sorption kinetics and dissolution performance under a range of pH conditions. Scanning electron microscopy with energy dispersive X-ray analysis was used to investigate the microstructure of partially released ASD particles. Coating thickness and defect density (inferred from deposition rates) were found to impact water sorption kinetics. Despite reduced water sorption kinetics, the presence of a coating was not found to impact dissolution rates under conditions where rapid drug release was observed. Under slower releasing conditions, underlying matrix crystallization was reduced by the coating, enabling greater levels of drug release. These results demonstrate that water was able to penetrate through the ALC coating, hydrating the amorphous solid, which can initiate dissolution of drug and/or polymer (depending on pH conditions). Swelling of the ASD substrate subsequently occurs, disrupting and cracking the coating, which serves to facilitate rapid drug release. Water sorption kinetics are highlighted as a potential predictive tool to investigate the coating quality and its potential impact on dissolution performance. This study has implications for formulation design and evaluation of ALC-coated ASD particles.


Assuntos
Polímeros , Água , Liberação Controlada de Fármacos , Solubilidade , Cristalização , Polímeros/química , Água/química , Composição de Medicamentos/métodos
2.
Mol Pharm ; 19(7): 2343-2350, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35477294

RESUMO

Amorphous formulations, increasingly employed to deliver poorly soluble drugs, generally contain surfactants to improve wetting and dissolution. These surfactants are often liquids and can potentially increase the mobility of the drug and reduce its stability, but little is known about this effect. Here we investigate the effect of four common nonionic surfactants (Tween 80, Span 80, Triton X-100, and Poloxamer 407) on the crystallization of amorphous nifedipine (NIF). We find that the surfactants significantly enhance the rates of crystal nucleation and growth even at low concentrations, by up to 2 orders of magnitude at 10 wt %. The surfactants tested show similar enhancement effects independent of their structural details and hydrophilic-lipophilic balance (HLB), suggesting that surfactant adsorption at solid/liquid interfaces does not play a major role in crystal nucleation and growth. Importantly, the surfactants accelerate crystal nucleation and growth by a similar factor. This result mirrors the previous finding that a polymer dopant in a molecular glass-former causes similar slowdown of nucleation and growth. These results indicate that nucleation and growth in a deeply supercooled liquid are both mobility-limited, and a dopant mainly functions as a mobility modifier (enhancer or suppressor depending on the dopant). The common surfactants tested are all mobility enhancers and destabilize the amorphous drug, and this negative effect must be managed using stabilizers such as polymers. The effect of surfactants on nucleation can be predicted from the effect on crystal growth and the crystallization kinetics of the pure system, using the same principle previously established for drug-polymer systems. We show how the independently measured nucleation and growth rates enable predictions of the overall crystallization rates.


Assuntos
Nifedipino , Tensoativos , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Nifedipino/química , Polímeros/química , Solubilidade , Tensoativos/química
3.
ACS Appl Mater Interfaces ; 14(36): 40698-40710, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36054111

RESUMO

Preventing crystallization is a primary concern when developing amorphous drug formulations. Recently, atomic layer coatings (ALCs) of aluminum oxide demonstrated crystallization inhibition of high drug loading amorphous solid dispersions (ASDs) for over 2 years. The goal of the current study was to probe the breadth and mechanisms of this exciting finding through multiple drug/polymer model systems, as well as particle and coating attributes. The model ASD systems selected provide for a range of hygroscopicity and chemical functional groups, which may contribute to the crystallization inhibition effect of the ALC coatings. Atomic layer coating was performed to apply a 5-25 nm layer of aluminum oxide or zinc oxide onto ASD particles, which imparted enhanced micromeritic properties, namely, reduced agglomeration and improved powder flowability. ASD particles were stored at 40 °C and a selected relative humidity level between 31 and 75%. Crystallization was monitored by X-ray powder diffraction and scanning electron microscopy (SEM) up to 48 weeks. Crystallization was observable by SEM within 1-2 weeks for all uncoated samples. After ALC, crystallization was effectively delayed or completely inhibited in some systems up to 48 weeks. The delay achieved was demonstrated regardless of polymer hygroscopicity, presence or absence of hydroxyl functional groups in drugs and/or polymers, particle size, or coating properties. The crystallization inhibition effect is attributed primarily to decreased surface molecular mobility. ALC has the potential to be a scalable strategy to enhance the physical stability of ASD systems to enable high drug loading and enhanced robustness to temperature or relative humidity excursions.


Assuntos
Óxido de Alumínio , Polímeros , Cristalização , Estabilidade de Medicamentos , Polímeros/química , Pós/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA