Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 242(3): 639-652, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240750

RESUMO

Compensatory stepping reactions to recover balance are frequently performed, however, the role of sensory feedback in regulating these responses is not fully understood. Specifically, it is unknown whether vestibular input influences compensatory stepping. Here, we aimed to assess whether step responses utilize vestibular input by combining medio-lateral galvanic vestibular stimulation (GVS) with step-inducing balance perturbations via unpredictable anterior-posterior platform translations. Step responses were assessed for any lateral differences due to the illusory sense of left (LGVS) or rightward (RGVS) postural motion in terms of pre-step weight-shifts, center of mass (COM) motion and step-placement as well as lateral stability when recovering balance. GVS evoked clear differences from the pre-step phase onwards, in an asymmetrical pattern depending on the GVS direction relative to the right step-leg side. RGVS induced a leftwards postural shift to create a larger stability margin to the right (p < 0.0007), opposing the illusory motion and reducing the fall towards the unsupported side during the step; however, RGVS caused no change in step-width. Conversely, LGVS evoked a leftward step placement (p < 0.0001) in the direction of the mis-sensed motion, but without any rightward shift in postural motion. This asymmetry is consistent with vestibular input predictively modulating pre-step lateral weight-shifts and foot-placement in accordance with step mechanics, specifically in controlling frontal plane stability when lifting the foot to step.


Assuntos
Perna (Membro) , Postura , Humanos , Postura/fisiologia , Perna (Membro)/fisiologia , Pé/fisiologia , Movimento (Física) , Equilíbrio Postural/fisiologia
2.
J Neurophysiol ; 130(1): 199-211, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377219

RESUMO

Imperceptible tactile noise applied to the skin of the feet enhances posture-correcting cutaneous reflexes. This sensory augmentation technique, stochastic resonance (SR), has not been tested in the less-sensitive hairy skin of the leg for its reflex-enhancement ability. The objectives of this study were to determine whether calf skin stimulation produces cutaneous reflexes and whether noise can modify the reflex. In 20 participants, electrotactile pulse trains were applied at the calf while participants performed submaximal isometric knee extension. To test SR, five different levels of vibrotactile noise were applied simultaneously to the test input. Muscle activity from the vastus lateralis (VL) was analyzed 60-110 ms after stimulation. Reflex ratios were calculated by dividing the reflex peak activity by the prestimulation background muscle activity. A significant reflex response was evoked in 16/20 participants (5.41 ± 2.6% of background muscle activity); these responses varied between individuals with eight being facilitatory and eight being inhibitory. In half of the participants, a new reflex appeared at some level of added noise (n = 10). The average reflex ratio of the study population was significantly higher at the "optimal" noise level (8.61 ± 4.5) than at "baseline" (4.70 ± 5.6) (P = 0.002); the optimal level varied across participants. These results suggest that cutaneous reflexes exist at the VL in response to calf skin stimulation and that SR can change cutaneous reflexes at the leg. This study provides an important first step toward SR application in clinical populations with sensory loss such as individuals with lower extremity amputation.NEW & NOTEWORTHY Our work showed that cutaneous reflexes, known to be present in response to foot sole stimulation, can also be evoked by stimulation of hairy leg skin. In addition, we demonstrated that adding tactile noise can enhance this reflex response. These findings demonstrate proof-of-concept for potential future applications where tactile stimulation, applied to the leg of an individual with amputation, can enhance postural-relevant reflexes. Improving postural control may reduce the risk of falls in this high-risk population.


Assuntos
Perna (Membro) , Coxa da Perna , Humanos , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Vibração , Estimulação Elétrica/métodos , Reflexo/fisiologia
3.
J Exp Biol ; 224(Pt 5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526555

RESUMO

Amongst tetrapods, mechanoreceptors on the feet establish a sense of body placement and help to facilitate posture and biomechanics. Mechanoreceptors are necessary for stabilizing the body while navigating through changing terrains or responding to a sudden change in body mass and orientation. Lizards such as the leopard gecko (Eublepharis macularius) employ autotomy - a voluntary detachment of a portion of the tail - to escape predation. Tail autotomy represents a natural form of significant (and localized) mass loss. Semmes-Weinstein monofilaments were used to investigate the effect of tail autotomy (and subsequent tail regeneration) on tactile sensitivity of each appendage of the leopard gecko. Prior to autotomy, we identified site-specific differences in tactile sensitivity across the ventral surfaces of the hindlimbs, forelimbs and tail. Repeated monofilament testing of both control (tail-intact) and tail-loss geckos had a significant sensitization effect (i.e. decrease in tactile threshold, maintained over time) in all regions of interest except the palmar surfaces of the forelimbs in post-autotomy geckos, compared with baseline testing. Although the regenerated tail is not an exact replica of the original, tactile sensitivity is shown to be effectively restored at this site. Re-establishment of tactile sensitivity on the ventral surface of the regenerate tail points towards a (continued) role in predator detection.


Assuntos
Lagartos , Animais , Fenômenos Biomecânicos , Extremidades , Lagartos/anatomia & histologia , Postura , Pele , Cauda
4.
Exp Brain Res ; 239(11): 3405-3415, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34505162

RESUMO

The nociceptive withdrawal reflex (NWR) threshold is commonly employed in the lower limb to assess clinical and experimentally induced pain. However, no studies to date have investigated changes in spinal nociception in the upper limb, via the NWR threshold, following experimentally induced central sensitization (CS). We tested the hypothesis that experimentally induced CS of the C5-C6 spinal segment significantly reduces NWR thresholds in muscles of the upper limb. Upper limb NWR thresholds from 20 young, healthy adults were assessed by applying noxious electrical stimuli to the right index finger and recording muscle activity from the biceps brachii (BI), triceps brachii (TRI), flexor carpi ulnaris (WF), and extensor carpi radialis longus (WE) muscles via surface electromyography. Topical cream (either 0.075% capsaicin, or control) was applied to the C5-C6 dermatome of the lateral forearm (50 cm2). NWR thresholds were compared at baseline, and four 10-min intervals after topical application. WF muscle NWR thresholds were significantly reduced in the capsaicin session compared to control, while TRI muscle NWR thresholds were significantly reduced 40 min after capsaicin application only (p < 0.05). There were no significant differences for BI or WE muscle NWR thresholds. We observed poor to moderate test-retest reliability for all upper limb NWR thresholds, a key contributor to the selective reduction in NWR thresholds among muscles. Accordingly, while our findings demonstrate some comparability to previously reported lower limb NWR studies, we concurrently report limitations of the upper limb NWR technique. Further exploration of optimal parameters for upper limb NWR acquisition is needed.


Assuntos
Capsaicina , Nociceptividade , Adulto , Sensibilização do Sistema Nervoso Central , Estimulação Elétrica , Eletromiografia , Humanos , Músculo Esquelético , Limiar da Dor , Reflexo , Reprodutibilidade dos Testes , Extremidade Superior
5.
Exp Brain Res ; 237(9): 2185-2196, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31214739

RESUMO

Our recent work demonstrated that vision can recalibrate the vestibular signal used to re-establish equilibrium following a platform perturbation. Here, we investigate whether vision provided during a platform perturbation can recalibrate the use of vestibular reafference during the dynamic phase of the perturbation response. Dynamic postural responses were examined during a series of five forward perturbations to the body, while galvanic vestibular stimulation (GVS) selectively altered vestibular feedback and LCD occlusion spectacles controlled visual availability. Responses with and without vision were compared. The presence of GVS caused 1.78 ± 0.19 cm of medio-lateral (ML) body motion toward the anode during the initial 3 s of the dynamic postural response across perturbations. This dynamic ML response was attenuated across perturbations 1-3 independent of visual availability, resulting in a significant reduction of ML center of mass and pressure deviations (p < 0.01, ƞ2 = 0.27). That is, the vestibular influence on the ML perturbation response could be altered but vision was not necessary for this adaptation. After removing GVS, the ML response component reversed in direction toward the cathode with a magnitude that was not significantly different to the amount of response attenuation seen when GVS was present (- 0.95 ± 0.19 cm; p = 0.99, ƞ2 = 0.00). This suggested that the use of a GVS-altered vestibular signal during dynamic perturbation responses could be recalibrated, but that visual feedback was likely not responsible. Alternative mechanisms to explain the recalibration process are discussed.


Assuntos
Retroalimentação Sensorial/fisiologia , Equilíbrio Postural/fisiologia , Vestíbulo do Labirinto/fisiologia , Percepção Visual/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Adulto Jovem
6.
Exp Brain Res ; 237(2): 443-452, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30456694

RESUMO

Torque depression (TD) is the reduction in steady-state isometric torque following active muscle shortening when compared to an isometric reference contraction at the same muscle length and activation level. Central nervous system excitability differs in the TD state. While torque production about a joint is influenced by both agonist and antagonist muscle activation, investigations of corticospinal excitability have focused on agonist muscle groups. Hence, it is unknown how the TD state affects spinal and supraspinal excitability of an antagonist muscle. Eight participants (~ 24y, three female) performed 14 submaximal dorsiflexion contractions at the intensity needed to maintain a level of integrated electromyographic activity in the soleus equivalent to 15% of that recorded during a maximum plantar flexion contraction. The seven contractions of the TD protocol included a 2 s isometric phase at an ankle angle of 140°, a 1 s shortening phase at 40°/s, and a 7 s isometric phase at an angle of 100°. The seven isometric reference contractions were performed at an ankle angle of 100° for 10 s. Motor evoked potentials (MEPs), cervicomedullary motor evoked potentials (CMEPs), and maximal M-waves (Mmax) were recorded from the soleus in both conditions. In the TD compared to isometric reference state, a 13% reduction in dorsiflexor torque was accompanied by 10% lower spinal excitability (normalized CMEP amplitude; CMEP/Mmax), and 17% greater supraspinal excitability (normalized MEP amplitude; MEP/CMEP) for the soleus muscle. These findings demonstrate a neuromechanical coupling following active muscle shortening and indicate that the underlying mechanisms of TD influence antagonist activation during voluntary force production.


Assuntos
Córtex Cerebral/fisiologia , Potencial Evocado Motor/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Nervos Periféricos/fisiologia , Medula Espinal/fisiologia , Adulto , Estimulação Elétrica/métodos , Eletromiografia/métodos , Feminino , Humanos , Masculino , Torque , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
7.
J Neurophysiol ; 120(3): 1233-1246, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873612

RESUMO

Cutaneous afferents convey exteroceptive information about the interaction of the body with the environment and proprioceptive information about body position and orientation. Four classes of low-threshold mechanoreceptor afferents innervate the foot sole and transmit feedback that facilitates the conscious and reflexive control of standing balance. Experimental manipulation of cutaneous feedback has been shown to alter the control of gait and standing balance. This has led to a growing interest in the design of intervention strategies that enhance cutaneous feedback and improve postural control. The advent of single-unit microneurography has allowed the firing and receptive field characteristics of foot sole cutaneous afferents to be investigated. In this review, we consolidate the available cutaneous afferent microneurographic recordings from the foot sole and provide an analysis of the firing threshold, and receptive field distribution and density of these cutaneous afferents. This work enhances the understanding of the foot sole as a sensory structure and provides a foundation for the continued development of sensory augmentation insoles and other tactile enhancement interventions.


Assuntos
Potenciais de Ação , Pé/inervação , Pé/fisiologia , Mecanorreceptores/fisiologia , Tato/fisiologia , Retroalimentação Fisiológica , Humanos , Microeletrodos , Estimulação Física , Equilíbrio Postural , Limiar Sensorial
8.
Exp Brain Res ; 236(11): 2887-2898, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30073386

RESUMO

Precise control of the ankle is required to safely clear the ground during walking. Skin input contributes to proprioception about the ankle joint, during both passive movements and level walking. How skin might contribute to proprioceptive control of the ankle during a more complex functional task such as obstacle avoidance is unknown. The purpose of this study was to investigate skin contribution from the dorsum of the ankle joint to safely cross an obstacle, and examine the interaction between vision and skin. It was hypothesized that the lead and trail limbs would be influenced primarily by visual information and skin cues, respectively. Eleven healthy adults crossed an obstacle with either (1) intact sensory input (control) (2) reduced skin input using a topical anesthetic (anesthesia), (3) reduced visual input of the lower half of the visual field (partial vision) or (4) simultaneous reduction of skin and vision (paired). Kinematic measures of phase-dependent changes during these conditions were examined while subjects crossed the obstacle with their anesthetised foot as either the leading or trailing limb. Interestingly, lead limb toe trajectory was significantly affected both by deficits in visual and skin input, although the joint angle strategies differed across these sensory conditions. Subjects increased lead hip flexion with partial vision but increased hip roll with skin anesthesia relative to control. In contrast, trail limb toe trajectory was affected only by visual sensory loss. Overall visual feedback and skin input from the ankle dorsum differentially affect lead and trail limb kinematics to successfully cross an obstacle. Interestingly, it appears vision is not entirely able to compensate for reduced skin input during obstacle crossing.


Assuntos
Articulação do Tornozelo/fisiologia , Sinais (Psicologia) , Retroalimentação Sensorial/fisiologia , Marcha/fisiologia , Fenômenos Fisiológicos da Pele , Percepção do Tato/fisiologia , Adulto , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Caminhada/fisiologia , Adulto Jovem
9.
J Neurophysiol ; 118(4): 1931-1942, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679842

RESUMO

Single unit microneurography was used to record the firing characteristics of the four classes of foot sole cutaneous afferents [fast and slowly adapting type I and II (FAI, FAII, SAI, and SAII)] in response to sinusoidal vibratory stimuli. Frequency (3-250 Hz) and amplitude (0.001-2 mm) combinations were applied to afferent receptive fields through a 6-mm diameter probe. The impulses per cycle, defined as the number of action potentials evoked per vibration sine wave, were measured over 1 s of vibration at each frequency-amplitude combination tested. Afferent entrainment threshold (lowest amplitude at which an afferent could entrain 1:1 to the vibration frequency) and afferent firing threshold (minimum amplitude for which impulses per cycle was greater than zero) were then obtained for each frequency. Increases in vibration frequency are generally associated with decreases in expected impulses per cycle (P < 0.001), but each foot sole afferent class appears uniquely tuned to vibration stimuli. FAII afferents tended to have the lowest entrainment and firing thresholds (P < 0.001 for both); however, these afferents seem to be sensitive across frequency. In contrast to FAII afferents, SAI and SAII afferents tended to demonstrate optimal entrainment to frequencies below 20 Hz and FAI afferents faithfully encoded frequencies between 8 and 60 Hz. Contrary to the selective activation of distinct afferent classes in the hand, application of class-specific frequencies in the foot sole is confounded due to the high sensitivity of FAII afferents. These findings may aid in the development of sensorimotor control models or the design of balance enhancement interventions.NEW & NOTEWORTHY Our work provides a mechanistic look at the capacity of foot sole cutaneous afferents to respond to vibration of varying frequency and amplitude. We found that foot sole afferent classes are uniquely tuned to vibration stimuli; however, unlike in the hand, they cannot be independently activated by class-specific frequencies. Viewing the foot sole as a sensory structure, the present findings may aid in the refinement of sensorimotor control models and design of balance enhancement interventions.


Assuntos
Pé/inervação , Mecanorreceptores/fisiologia , Limiar Sensorial , Vibração , Adulto , Potenciais Somatossensoriais Evocados , Feminino , Pé/fisiologia , Humanos , Masculino , Pele/inervação
10.
J Neurophysiol ; 117(4): 1489-1498, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077660

RESUMO

Muscle spindles provide exquisitely sensitive proprioceptive information regarding joint position and movement. Through passively driven length changes in the muscle-tendon unit (MTU), muscle spindles detect joint rotations because of their in-parallel mechanical linkage to muscle fascicles. In human microneurography studies, muscle fascicles are assumed to follow the MTU and, as such, fascicle length is not measured in such studies. However, under certain mechanical conditions, compliant structures can act to decouple the fascicles, and, therefore, the spindles, from the MTU. Such decoupling may reduce the fidelity by which muscle spindles encode joint position and movement. The aim of the present study was to measure, for the first time, both the changes in firing of single muscle spindle afferents and changes in muscle fascicle length in vivo from the tibialis anterior muscle (TA) during passive rotations about the ankle. Unitary recordings were made from 15 muscle spindle afferents supplying TA via a microelectrode inserted into the common peroneal nerve. Ultrasonography was used to measure the length of an individual fascicle of TA. We saw a strong correlation between fascicle length and firing rate during passive ankle rotations of varying rates (0.1-0.5 Hz) and amplitudes (1-9°). In particular, we saw responses observed at relatively small changes in muscle length that highlight the sensitivity of the TA muscle to small length changes. This study is the first to measure spindle firing and fascicle dynamics in vivo and provides an experimental basis for further understanding the link between fascicle length, MTU length, and spindle firing patterns.NEW & NOTEWORTHY Muscle spindles are exquisitely sensitive to changes in muscle length, but recordings from human muscle spindle afferents are usually correlated with joint angle rather than muscle fascicle length. In this study, we monitored both muscle fascicle length and spindle firing from the human tibialis anterior muscle in vivo. Our findings are the first to measure these signals in vivo and provide an experimental basis for exploring this link further.


Assuntos
Movimento/fisiologia , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Propriocepção/fisiologia , Tendões/fisiologia , Adulto , Articulação do Tornozelo/inervação , Teorema de Bayes , Biofísica , Estimulação Elétrica , Eletromiografia , Feminino , Humanos , Masculino , Fusos Musculares/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia , Adulto Jovem
11.
Exp Brain Res ; 235(2): 407-414, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27752729

RESUMO

Visuo-vestibular recalibration, in which visual information is used to alter the interpretation of vestibular signals, has been shown to influence both oculomotor control and navigation. Here we investigate whether vision can recalibrate the vestibular feedback used during the re-establishment of equilibrium following a perturbation. The perturbation recovery responses of nine participants were examined following exposure to a period of 11 s of galvanic vestibular stimulation (GVS). During GVS in VISION trials, occlusion spectacles provided 4 s of visual information that enabled participants to correct for the GVS-induced tilt and associate this asymmetric vestibular signal with a visually provided 'upright'. NoVISION trials had no such visual experience. Participants used the visual information to assist in realigning their posture compared to when visual information was not provided (p < 0.01). The initial recovery response to a platform perturbation was not impacted by whether vision had been provided during the preceding GVS, as determined by peak centre of mass and pressure deviations (p = 0.09). However, after using vision to reinterpret the vestibular signal during GVS, final centre of mass and pressure equilibrium positions were significantly shifted compared to trials in which vision was not available (p < 0.01). These findings support previous work identifying a prominent role of vestibular input for re-establishing postural equilibrium following a perturbation. Our work is the first to highlight the capacity for visual feedback to recalibrate the vertical interpretation of vestibular reafference for re-establishing equilibrium following a perturbation. This demonstrates the rapid adaptability of the vestibular reafference signal for postural control.


Assuntos
Retroalimentação Sensorial/fisiologia , Equilíbrio Postural/fisiologia , Vestíbulo do Labirinto/fisiologia , Visão Ocular/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Resposta Galvânica da Pele/fisiologia , Humanos , Masculino , Pressão , Estatísticas não Paramétricas , Adulto Jovem
12.
BMC Vet Res ; 13(1): 68, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270140

RESUMO

BACKGROUND: The purpose of this study was to measure the muscular activation in four forelimb muscles while dogs performed agility tasks (i.e., jumping and A-frame) and to provide insight into potential relationships between level of muscular activation and risk of injury. Muscle activation in eight healthy, client-owned agility dogs was measured using ultrasound-guided fine-wire electromyography of four specific forelimb muscles: Biceps Brachii, Supraspinatus, Infraspinatus, and Triceps Brachii - Long Head, while dogs performed a two jump sequence and while dogs ascended and descended an A-frame obstacle at two different competition heights. RESULTS: The peak muscle activations during these agility tasks were between 1.7 and 10.6 fold greater than walking. Jumping required higher levels of muscle activation compared to ascending and descending an A-frame, for all muscles of interest. There was no significant difference in muscle activation between the two A-frame heights. CONCLUSIONS: Compared to walking, all of the muscles were activated at high levels during the agility tasks and our findings indicate that jumping is an especially demanding activity for dogs in agility. This information is broadly relevant to understanding the pathophysiology of forelimb injuries related to canine athletic activity.


Assuntos
Membro Anterior/fisiologia , Monitorização Fisiológica/veterinária , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Animais , Cães , Feminino , Masculino , Monitorização Fisiológica/métodos
13.
Exp Brain Res ; 234(12): 3689-3697, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27601251

RESUMO

When an electrical stimulus is applied to perturb the vestibular system, a postural response is generated orthogonal to head orientation. It has previously been shown that there is a convergence of neck proprioceptive and vestibular input within the cerebellum to provide a head-on-body reference frame (Manzoni et al. in Neuroscience 93:1095-1107, 1999). The objective of this experiment was to determine whether the direction of the postural response to a vestibular perturbation is modulated when function of the cerebellar vermis is temporarily depressed. Twenty participants were randomly assigned to a SHAM group (paired-pulse transcranial magnetic stimulation) or a TEST group (continuous theta burst stimulation). Stochastic vestibular stimulation (SVS) was applied to standing subjects with their head facing forward or over their left shoulder. Cumulant density traces were established between the SVS and shear force over 180°, and the peak amplitude determined the direction of sway. There were no significant changes in sway direction when the head was facing forward for either stimulation (TEST or SHAM; p = 0.889) or when the head was facing over the shoulder for the SHAM condition (p = 0.954). There was, however, a significant change in sway direction when the head was turned with a depressed cerebellum (p = 0.018); from the expected antero-posterior direction, orthogonal to head orientation, to one slightly more mediolateral with respect to the feet. These results suggest the cerebellum plays a role in the integration of input to generate an appropriately directed postural response relative to the head position.


Assuntos
Vermis Cerebelar/fisiologia , Orientação/fisiologia , Postura/fisiologia , Vestíbulo do Labirinto/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Lateralidade Funcional , Movimentos da Cabeça , Humanos , Masculino , Equilíbrio Postural , Processos Estocásticos , Ritmo Teta , Estimulação Magnética Transcraniana , Adulto Jovem
14.
J Neurophysiol ; 114(4): 2144-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26289466

RESUMO

Perceptual thresholds are known to vary across the foot sole, despite a reported even distribution in cutaneous afferents. Skin mechanical properties have been proposed to account for these differences; however, a direct relationship between foot sole afferent firing, perceptual threshold, and skin mechanical properties has not been previously investigated. Using the technique of microneurography, we recorded the monofilament firing thresholds of cutaneous afferents and associated perceptual thresholds across the foot sole. In addition, receptive field hardness measurements were taken to investigate the influence of skin hardness on these threshold measures. Afferents were identified as fast adapting [FAI (n = 48) or FAII (n = 13)] or slowly adapting [SAI (n = 21) or SAII (n = 20)], and were grouped based on receptive field location (heel, arch, metatarsals, toes). Overall, perceptual thresholds were found to most closely align with firing thresholds of FA afferents. In contrast, SAI and SAII afferent firing thresholds were found to be significantly higher than perceptual thresholds and are not thought to mediate monofilament perceptual threshold across the foot sole. Perceptual thresholds and FAI afferent firing thresholds were significantly lower in the arch compared with other regions, and skin hardness was found to positively correlate with both FAI and FAII afferent firing and perceptual thresholds. These data support a perceptual influence of skin hardness, which is likely the result of elevated FA afferent firing threshold at harder foot sole sites. The close coupling between FA afferent firing and perceptual threshold across foot sole indicates that small changes in FA afferent firing can influence perceptual thresholds.


Assuntos
Pé/fisiologia , Neurônios Aferentes/fisiologia , Limiar Sensorial/fisiologia , Fenômenos Fisiológicos da Pele , Tato/fisiologia , Potenciais de Ação/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
15.
Exp Brain Res ; 233(8): 2477-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26019009

RESUMO

The aim of the current study was to explore the role of dorsal foot skin on the joint kinematics of gait during level walking. Twelve volunteers experienced sensory perturbations with either reduced dorsal skin feedback using topical anesthetic, reduced visual feedback of the lower visual field, or a combination of both cutaneous and visual reductions (paired). The visual condition was introduced to impose a greater reliance on skin input (goggles occluded lower visual field input). Our results showed that a reduction in skin input, alone, resulted in significant angular position changes at both the ankle and knee joints through swing (increased flexion, p < 0.010), despite preservation of minimal toe clearance (MTC; p = 0.908). Conversely, a reduction in lower visual field input resulted in a greater minimal toe clearance affect (MTC; p < 0.001), a slight increase in dorsiflexion at the ankle (p = 0.046), yet no effect on angular position changes for the knee (p = 0.110). The locomotor changes observed following a reduction in cutaneous feedback from the foot dorsum suggest an important role of the skin over this region for the regulation of level ground walking. Interestingly, it appears that these healthy young adults were able to compensate for the reduced skin information while preserving locomotor efficiency via a maintained ground clearance (MTC). Our data also demonstrated an interaction between skin and visual inputs; vision appears to have a less dominant role compared to skin in controlling the joint positions through swing phase of gait. This work is the first to highlight the influence of reduced cutaneous input from the dorsum of the foot on locomotor strategies.


Assuntos
Anestesia , Tornozelo/fisiologia , Retroalimentação Sensorial/fisiologia , Extremidade Inferior/fisiologia , Propriocepção/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
16.
Front Neurosci ; 18: 1329832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629048

RESUMO

Introduction: The foot sole endures high magnitudes of pressure for sustained periods which results in transient but habitual cutaneous ischemia. Upon unloading, microvascular reactivity in cutaneous capillaries generates an influx of blood flow (PORH: post-occlusive reactive hyperemia). Whether pressure induced cutaneous ischemia from loading the foot sole impacts mechanoreceptor sensitivity remains unknown. Methods: Pressure induced ischemia was attained using a custom-built-loading device that applied load to the whole right foot sole at 2 magnitudes (15 or 50% body weight), for 2 durations (2 or 10 minutes) in thirteen seated participants. Mechanoreceptor sensitivity was assessed using Semmes-Weinstein monofilaments over the third metatarsal (3MT), medial arch (MA), and heel. Perceptual thresholds (PT) were determined for each site prior to loading and then applied repeatedly to a metronome to establish the time course to return to PT upon unload, defined as PT recovery time. Microvascular flux was recorded from an in-line laser speckle contrast imager (FLPI-2, Moor Instruments Inc.) to establish PORH peak and recovery rates at each site. Results: PT recovery and PORH recovery rate were most influenced at the heel and by load duration rather than load magnitude. PT recovery time at the heel was significantly longer with 10 minutes of loading, regardless of magnitude. Heel PORH recovery rate was significantly slower with 10minutes of loading. The 3MT PT recovery time was only longer after 10 minutes of loading at 50% body weight. Microvascular reactivity or sensitivity was not influenced with loading at the MA. A simple linear regression found that PORH recovery rate could predict PT recovery time at the heel (R2=0.184, p<0.001). Conclusion: In populations with degraded sensory feedback, such as diabetic neuropathy, the risk for ulcer development is heightened. Our work demonstrated that prolonged loading in healthy individuals can impair skin sensitivity, which highlights the risks of prolonged loading and is likely exacerbated in diabetes. Understanding the direct association between sensory function and microvascular reactivity in age and diabetes related nerve damage, could help detect early progressions of neuropathy and mitigate ulcer development.

17.
Appl Physiol Nutr Metab ; 49(3): 293-305, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913527

RESUMO

There is growing evidence to support a role for the abductor hallucis (AH) in standing balance control; however, functional properties of the muscle that may provide more insight into AH's specific contribution to upright posture have yet to be characterized. This study was conducted to quantify functional neuromechanical properties of the AH and correlate the measures with standing balance variables. We quantified strength and voluntary activation during maximal voluntary isometric contractions of the great toe abductor in nine (3 females and 6 males) healthy, young participants. During electrically evoked twitch and tetanic contractions, we measured great toe abduction peak force and constructed a force-frequency curve. We also evaluated peak abduction force, contraction time (CT), half-relaxation time (HRT), rate of force development (RFD), and relaxation rate (RR) from twitch contractions evoked using doublet stimuli. Strength, VA, CT, HRT, RFD, and RR were correlated to centre of pressure standard deviation (COP SD) and velocity (COP VEL) variables of the traditional COP trace and its rambling and trembling components during single-legged stance. AH twitch properties (e.g., CT: 169.8 ± 32.3 ms; HRT: 124.1 ± 29.2 ms) and force-frequency curve were similar to other slow contractile muscles. Contractile speed related negatively with COP VEL, suggesting AH may be appropriate for slow, prolonged tasks such as ongoing postural balance control. Correlation coefficient outcomes for all variables were similar between rambling and trembling components. Our results provide further evidence for the importance of AH neuromechanical function for standing balance control, at least during a challenging single-legged posture.


Assuntos
, Músculo Esquelético , Masculino , Feminino , Humanos , Pé/fisiologia , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Postura/fisiologia , Equilíbrio Postural/fisiologia
18.
J Neurophysiol ; 109(6): 1614-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274312

RESUMO

We have shown for the first time that single cutaneous afferents in the foot dorsum have significant reflex coupling to motoneurons supplying muscles in the upper limb, particularly posterior deltoid and triceps brachii. These observations strengthen what we know from whole nerve stimulation, that skin on the foot and ankle can contribute to the modulation of interlimb muscles in distant innervation territories. The current work provides evidence of the mechanism behind the reflex, where one single skin afferent can evoke a reflex response, rather than a population. Nineteen of forty-one (46%) single cutaneous afferents isolated in the dorsum or plantar surface of the foot elicited a significant modulation of muscle activity in the upper limb. Identification of single afferents in this reflex indicates the strength of the connection and, ultimately, the importance of foot skin in interlimb coordination. The median response magnitude was 2.29% of background EMG, and the size of the evoked response did not significantly differ among the four mechanoreceptor classes (P > 0.1). Interestingly, although the distribution of afferents types did not differ across the foot dorsum, there was a significantly greater coupling response from receptors located on the medial aspect of the foot dorsum (P < 0.01). Furthermore, the most consistent coupling with upper limb muscles was demonstrated by type I afferents (fast and slowly adapting). This work contributes to the current literature on receptor specificity, supporting the view that individual classes of cutaneous afferents may subserve specific roles in kinesthesia, reflexes, and tactile perception.


Assuntos
Pé/inervação , Contração Isométrica , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Limiar Sensorial , Pele/inervação , Extremidade Superior/inervação , Adulto , Feminino , Humanos , Masculino , Mecanorreceptores/classificação , Mecanorreceptores/fisiologia , Neurônios Motores/classificação , Músculo Esquelético/inervação , Reflexo , Pele/citologia , Percepção do Tato
19.
J Neurophysiol ; 109(3): 839-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23155170

RESUMO

Skin on the foot sole plays an important role in postural control. Cooling the skin of the foot is often used to induce anesthesia to determine the role of skin in motor and balance control. The effect of cooling on the four classes of mechanoreceptor in the skin is largely unknown, and thus the aim of the present study was to characterize the effects of cooling on individual skin receptors in the foot sole. Such insight will better isolate individual receptor contributions to balance control. Using microneurography, we recorded 39 single nerve afferents innervating mechanoreceptors in the skin of the foot sole in humans. Afferents were identified as fast-adapting (FA) or slowly adapting (SA) type I or II (FA I n = 16, FA II n = 7, SA I n = 6, SA II n = 11). Receptor response to vibration was compared before and after cooling of the receptive field (2-20 min). Overall, firing response was abolished in 30% of all receptors, and this was equally distributed across receptor type (P = 0.69). Longer cooling times were more likely to reduce firing response below 50% of baseline; however, some afferent responses were abolished with shorter cooling times (2-5 min). Skin temperature was not a reliable indicator of the level of receptor activation and often became uncoupled from receptor response levels, suggesting caution in the use of this parameter as an indicator of anesthesia. When cooled, receptors preferentially coded lower frequencies in response to vibration. In response to a sustained indentation, SA receptors responded more like FA receptors, primarily coding "on-off" events.


Assuntos
Potenciais de Ação , Temperatura Baixa , Antepé Humano/inervação , Mecanorreceptores/fisiologia , Pele/inervação , Vibração , Adaptação Fisiológica , Adulto , Feminino , Humanos , Masculino , Mecanorreceptores/classificação , Nervos Periféricos/fisiologia , Pele/citologia , Tato
20.
Motor Control ; 27(2): 293-313, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400025

RESUMO

To determine how heating affects dynamic joint position sense at the knee, participants (n = 11; F = 6) were seated in a HUMAC NORM dynamometer. The leg was passively moved through extension and flexion, and participants indicated when the 90° reference position was perceived, both at baseline (28.74 ± 2.43 °C) and heated (38.05 ± 0.16 °C) skin temperatures. Day 2 of testing reduced knee skin feedback with lidocaine. Directional error (actual leg angle-target angle) and absolute error (AE) were calculated. Heating reduced extension AE (baseline AE = 5.46 ± 2.39°, heat AE = 4.10 ± 1.97°), but not flexion. Lidocaine did not significantly affect flexion AE or extension AE. Overall, increased anterior knee-skin temperature improves dynamic joint position sense during passive knee extension, where baseline matching is poorer. Limited application of lidocaine to the anterior thigh, reducing some skin input, did not influence dynamic joint position sense, suggesting cutaneous receptors may play only a secondary role to spindle information during kinesthetic tasks. Importantly, cutaneous input from adjacent thigh regions cannot be ruled out as a contributor.


Assuntos
Calefação , Cinestesia , Humanos , Propriocepção , Articulação do Joelho , Joelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA