Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Genet ; 54(5): 338-345, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28007939

RESUMO

BACKGROUND: Haemophilia B is caused by genetic aberrations in the F9 gene. The majority of these are non-synonymous mutations that alter the primary structure of blood coagulation factor IX (FIX). However, a synonymous mutation c.459G>A (Val107Val) was clinically reported to result in mild haemophilia B (FIX coagulant activity 15%-20% of normal). The F9 mRNA of these patients showed no skipping or retention of introns and/or change in mRNA levels, suggesting that mRNA integrity does not contribute to the origin of the disease in affected individuals. The aim of this study is to elucidate the molecular mechanisms that can explain disease manifestations in patients with this synonymous mutation. METHODS: We analyse the molecular mechanisms underlying the FIX deficiency through in silico analysis and reproducing the c.459G>A (Val107Val) mutation in stable cell lines. Conformation and non-conformation sensitive antibodies, limited trypsin digestion, activity assays for FIX, interaction with other proteins and post-translation modifications were used to evaluate the biophysical and biochemical consequences of the synonymous mutation. RESULTS: The Val107Val synonymous mutation in F9 was found to significantly diminish FIX expression. Our results suggest that this mutation slows FIX translation and affects its conformation resulting in decreased extracellular protein level. The altered conformation did not change the specific activity of the mutated protein. CONCLUSIONS: The pathogenic basis for one synonymous mutation (Val107Val) in the F9 gene associated with haemophilia B was determined. A mechanistic understanding of this synonymous variant yields potential for guiding and developing future therapeutic treatments.


Assuntos
Fator IX/química , Fator IX/genética , Hemofilia B/genética , Mutação Silenciosa/genética , Linhagem Celular Tumoral , Códon/genética , Fator IX/metabolismo , Fator VIIIa/química , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Termodinâmica
2.
Nucleic Acids Res ; 42(13): 8537-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24948608

RESUMO

Conserved ribosomal proteins frequently harbor additional segments in eukaryotes not found in bacteria, which could facilitate eukaryotic-specific reactions in the initiation phase of protein synthesis. Here we provide evidence showing that truncation of the N-terminal domain (NTD) of yeast Rps5 (absent in bacterial ortholog S7) impairs translation initiation, cell growth and induction of GCN4 mRNA translation in a manner suggesting incomplete assembly of 48S preinitiation complexes (PICs) at upstream AUG codons in GCN4 mRNA. Rps5 mutations evoke accumulation of factors on native 40S subunits normally released on conversion of 48S PICs to 80S initiation complexes (ICs) and this abnormality and related phenotypes are mitigated by the SUI5 variant of eIF5. Remarkably, similar effects are observed by substitution of Lys45 in the Rps5-NTD, involved in contact with Rps16, and by eliminating the last two residues of the C-terminal tail (CTT) of Rps16, believed to contact initiator tRNA base-paired to AUG in the P site. We propose that Rps5-NTD-Rps16-NTD interaction modulates Rps16-CTT association with Met-tRNAi (Met) to promote a functional 48S PIC.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Proteínas Ribossômicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 287(26): 22142-50, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22577144

RESUMO

The study of synthetic peptides corresponding to discrete regions of proteins has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, in many instances, small peptides are prone to rapid degradation or aggregation and may lack the conformation required to mimic the functional motifs of the protein. For peptides to function as pharmacologically active agents, efficient production or expression, high solubility, and retention of biological activity through purification and storage steps are required. We report here the design, expression, and functional analysis of eight engineered GST proteins (denoted GSHKTs) in which peptides ranging in size from 8 to 16 amino acids and derived from human high molecular weight kininogen (HK) domain 5 were inserted into GST (between Gly-49 and Leu-50). Peptides derived from HK are known to inhibit cell proliferation, angiogenesis, and tumor metastasis, and the biological activity of the HK peptides was dramatically (>50-fold) enhanced following insertion into GST. GSHKTs are soluble and easily purified from Escherichia coli by affinity chromatography. Functionally, these hybrid proteins cause inhibition of endothelial cell proliferation. Crystallographic analysis of GSHKT10 and GSHKT13 (harboring 10- and 13-residue HK peptides, respectively) showed that the overall GST structure was not perturbed. These results suggest that the therapeutic efficacy of short peptides can be enhanced by insertion into larger proteins that are easily expressed and purified and that GST may potentially be used as such a carrier.


Assuntos
Glutationa Transferase/química , Cininogênios/química , Peptídeos/química , Schistosoma japonicum/metabolismo , Animais , Proliferação de Células , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Glutationa Transferase/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Conformação Molecular , Mutagênese , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Estereoisomerismo
4.
Nucleic Acids Res ; 38(4): 1261-72, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19969550

RESUMO

Ribosomal protein (rp)S5 belongs to the family of the highly conserved rp's that contains rpS7 from prokaryotes and rpS5 from eukaryotes. Alignment of rpS5/rpS7 from metazoans (Homo sapiens), fungi (Saccharomyces cerevisiae) and bacteria (Escherichia coli) shows that the proteins contain a conserved central/C-terminal core region and possess variable N-terminal regions. Yeast rpS5 is 69 amino acids (aa) longer than the E. coli rpS7 protein; and human rpS5 is 48 aa longer than the rpS7, respectively. To investigate the function of the yeast rpS5 and in particular the role of its N-terminal region, we obtained and characterized yeast strains in which the wild-type yeast rpS5 was replaced by its truncated variants, lacking 13, 24, 30 and 46 N-terminal amino acids, respectively. All mutant yeast strains were viable and displayed only moderately reduced growth rates, with the exception of the strain lacking 46 N-terminal amino acids, which had a doubling time of about 3 h. Biochemical analysis of the mutant yeast strains suggests that the N-terminal part of the eukaryotic and, in particular, yeast rpS5 may impact the ability of 40S subunits to function properly in translation and affect the efficiency of initiation, specifically the recruitment of initiation factors eIF3 and eIF2.


Assuntos
Proteínas Ribossômicas/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Proteínas de Escherichia coli/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Evolução Molecular , Humanos , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/fisiologia , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Deleção de Sequência , Homologia de Sequência de Aminoácidos
5.
Mol Biol Evol ; 27(9): 2187-97, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20427418

RESUMO

The extracellular matrix (ECM) is a complex, multiprotein network that has essential roles in tissue integrity and intercellular signaling in the metazoa. Thrombospondins (TSPs) are extracellular, calcium-binding glycoproteins that have biologically important roles in mammals in angiogenesis, vascular biology, connective tissues, immune response, and synaptogenesis. The evolution of these complex functional properties is poorly understood. We report here on the evolution of TSPs and their ligand-binding capacities, from comparative genomics of species representing the major phyla of metazoa and experimental analyses of the oligomerization properties of noncanonical TSPs of basal deuterostomes. Monomeric, dimeric, trimeric, and pentameric TSPs have arisen through separate evolutionary events involving gain, loss, or modification of a coiled-coil domain or distinct domains at the amino-terminus. The relative transience of monomeric forms under evolution implicates a biological importance for multivalency of the C-terminal region of TSPs. Most protostomes have a single TSP gene encoding a pentameric TSP. The pentameric form is also present in deuterostomes, and gene duplications at the origin of deuterostomes and gene loss and further gene duplication events in the vertebrate lineage gave rise to distinct forms and novel domain architectures. Parallel analysis of the major ligands of mammalian TSPs revealed that many binding activities are neofunctions representing either coevolutionary innovations in the deuterostome lineage or neofunctions of ancient molecules such as CD36. Contrasting widely conserved capacities include binding to heparan glycosaminoglycans, fibrillar collagen, or RGD-dependent integrins. These findings identify TSPs as fundamental components of the extracellular interaction systems of metazoa and thus impact understanding of the evolution of ECM networks. The widely conserved activities of TSPs in binding to ECM components or PS2 clade integrins will be relevant to use of TSPs in synthetic extracellular matrices or tissue engineering. In contrast, the neofunctions of vertebrate TSPs likely include interactions suitable for therapeutic targeting without general disruption of ECM.


Assuntos
Evolução Molecular , Trombospondinas/genética , Animais , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Filogenia , Trombospondinas/classificação
6.
RNA ; 13(12): 2116-28, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17901157

RESUMO

Ribosomal protein (rp) S5 belongs to a family of ribosomal proteins that includes bacterial rpS7. rpS5 forms part of the exit (E) site on the 40S ribosomal subunit and is essential for yeast viability. Human rpS5 is 67% identical and 79% similar to Saccharomyces cerevisiae rpS5 but lacks a negatively charged (pI approximately 3.27) 21 amino acid long N-terminal extension that is present in fungi. Here we report that replacement of yeast rpS5 with its human homolog yielded a viable yeast strain with a 20%-25% decrease in growth rate. This replacement also resulted in a moderate increase in the heavy polyribosomal components in the mutant strain, suggesting either translation elongation or termination defects, and in a reduction in the polyribosomal association of the elongation factors eEF3 and eEF1A. In addition, the mutant strain was characterized by moderate increases in +1 and -1 programmed frameshifting and hyperaccurate recognition of the UAA stop codon. The activities of the cricket paralysis virus (CrPV) IRES and two mammalian cellular IRESs (CAT-1 and SNAT-2) were also increased in the mutant strain. Consistently, the rpS5 replacement led to enhanced direct interaction between the CrPV IRES and the mutant yeast ribosomes. Taken together, these data indicate that rpS5 plays an important role in maintaining the accuracy of translation in eukaryotes and suggest that the negatively charged N-terminal extension of yeast rpS5 might affect the ribosomal recruitment of specific mRNAs.


Assuntos
Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Bases , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação de Ácido Nucleico , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transfecção
7.
J Cell Biol ; 182(4): 727-39, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18710924

RESUMO

The evolutionarily conserved kelch-repeat protein muskelin was identified as an intracellular mediator of cell spreading. We discovered that its morphological activity is controlled by association with RanBP9/RanBPM, a protein involved in transmembrane signaling and a conserved intracellular protein complex. By subcellular fractionation, endogenous muskelin is present in both the nucleus and the cytosol. Muskelin subcellular localization is coregulated by its C terminus, which provides a cytoplasmic restraint and also controls the interaction of muskelin with RanBP9, and its atypical lissencephaly-1 homology motif, which has a nuclear localization activity which is regulated by the status of the C terminus. Transient or stable short interfering RNA-based knockdown of muskelin resulted in protrusive cell morphologies with enlarged cell perimeters. Morphology was specifically restored by complementary DNAs encoding forms of muskelin with full activity of the C terminus for cytoplasmic localization and RanBP9 binding. Knockdown of RanBP9 resulted in equivalent morphological alterations. These novel findings identify a role for muskelin-RanBP9 complex in pathways that integrate cell morphology regulation and nucleocytoplasmic communication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Núcleo Celular/metabolismo , Forma Celular , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Moléculas de Adesão Celular/química , Chlorocebus aethiops , Proteínas do Citoesqueleto/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Carioferinas/metabolismo , Camundongos , Dados de Sequência Molecular , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Deleção de Sequência , Frações Subcelulares/metabolismo , Proteína Exportina 1
8.
J Cell Sci ; 121(Pt 6): 784-95, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18285447

RESUMO

Thrombospondins (TSPs) are an evolutionarily ancient family of extracellular calcium-binding glycoproteins. The five mammalian TSPs collectively have important roles in angiogenesis and vascular biology, synaptogenesis, wound repair and connective tissue organisation. Their complex functions relate to the multiple postsecretion fates of TSPs that can involve endocytic uptake, proteolysis or retention within the extracellular matrix (ECM). Surprisingly, the molecular and cellular mechanisms by which TSPs become retained within the ECM are poorly understood. We hypothesised that the highly conserved TSP C-terminal domain mediates ECM retention. We report that ECM incorporation as insoluble punctate deposits is an evolutionarily conserved property of TSPs. ECM retention of TSP1 is mediated by the C-terminal region in trimeric form, and not by C-terminal monomer or trimers of the N-terminal domain or type 1 repeats. Using a novel mRFP-tagged TSP1 C-terminal trimer, we demonstrate that ECM retention involves the RGD site and a novel site in the L-lectin domain with structural similarity to the ligand-binding site of cargo transport proteins. CD47 and beta1 integrins are dispensable for ECM retention, but beta1 integrins enhance activity. These novel data advance concepts of the molecular processes that lead to ECM retention of TSP1.


Assuntos
Matriz Extracelular/química , Trombospondina 1/química , Sequência de Aminoácidos , Animais , Antígeno CD47/metabolismo , Linhagem Celular , Sequência Conservada , Cricetinae , Humanos , Integrina beta1/metabolismo , Camundongos , Oligopeptídeos/genética , Mutação Puntual , Estrutura Terciária de Proteína , Trombospondina 1/análise , Trombospondina 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA