RESUMO
BACKGROUND: Inhibition of programmed death-ligand 1 (PD-L1) with atezolizumab can induce durable clinical benefit (DCB) in patients with metastatic urothelial cancers, including complete remissions in patients with chemotherapy refractory disease. Although mutation load and PD-L1 immune cell (IC) staining have been associated with response, they lack sufficient sensitivity and specificity for clinical use. Thus, there is a need to evaluate the peripheral blood immune environment and to conduct detailed analyses of mutation load, predicted neoantigens, and immune cellular infiltration in tumors to enhance our understanding of the biologic underpinnings of response and resistance. METHODS AND FINDINGS: The goals of this study were to (1) evaluate the association of mutation load and predicted neoantigen load with therapeutic benefit and (2) determine whether intratumoral and peripheral blood T cell receptor (TCR) clonality inform clinical outcomes in urothelial carcinoma treated with atezolizumab. We hypothesized that an elevated mutation load in combination with T cell clonal dominance among intratumoral lymphocytes prior to treatment or among peripheral T cells after treatment would be associated with effective tumor control upon treatment with anti-PD-L1 therapy. We performed whole exome sequencing (WES), RNA sequencing (RNA-seq), and T cell receptor sequencing (TCR-seq) of pretreatment tumor samples as well as TCR-seq of matched, serially collected peripheral blood, collected before and after treatment with atezolizumab. These parameters were assessed for correlation with DCB (defined as progression-free survival [PFS] >6 months), PFS, and overall survival (OS), both alone and in the context of clinical and intratumoral parameters known to be predictive of survival in this disease state. Patients with DCB displayed a higher proportion of tumor-infiltrating T lymphocytes (TIL) (n = 24, Mann-Whitney p = 0.047). Pretreatment peripheral blood TCR clonality below the median was associated with improved PFS (n = 29, log-rank p = 0.048) and OS (n = 29, log-rank p = 0.011). Patients with DCB also demonstrated more substantial expansion of tumor-associated TCR clones in the peripheral blood 3 weeks after starting treatment (n = 22, Mann-Whitney p = 0.022). The combination of high pretreatment peripheral blood TCR clonality with elevated PD-L1 IC staining in tumor tissue was strongly associated with poor clinical outcomes (n = 10, hazard ratio (HR) (mean) = 89.88, HR (median) = 23.41, 95% CI [2.43, 506.94], p(HR > 1) = 0.0014). Marked variations in mutation loads were seen with different somatic variant calling methodologies, which, in turn, impacted associations with clinical outcomes. Missense mutation load, predicted neoantigen load, and expressed neoantigen load did not demonstrate significant association with DCB (n = 25, Mann-Whitney p = 0.22, n = 25, Mann-Whitney p = 0.55, and n = 25, Mann-Whitney p = 0.29, respectively). Instead, we found evidence of time-varying effects of somatic mutation load on PFS in this cohort (n = 25, p = 0.044). A limitation of our study is its small sample size (n = 29), a subset of the patients treated on IMvigor 210 (NCT02108652). Given the number of exploratory analyses performed, we intend for these results to be hypothesis-generating. CONCLUSIONS: These results demonstrate the complex nature of immune response to checkpoint blockade and the compelling need for greater interrogation and data integration of both host and tumor factors. Incorporating these variables in prospective studies will facilitate identification and treatment of resistant patients.
Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Carcinoma/prevenção & controle , Neoplasias Urológicas/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/imunologia , Carcinoma/etiologia , Carcinoma/imunologia , Exoma/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência de RNA , Neoplasias Urológicas/etiologia , Neoplasias Urológicas/imunologia , Urotélio/patologiaRESUMO
BACKGROUND: Patients with metastatic sarcomas have poor outcomes and although the disease may be amenable to immunotherapies, information regarding the immunologic profiles of soft tissue sarcoma (STS) subtypes is limited. METHODS: The authors identified patients with the common STS subtypes: leiomyosarcoma, undifferentiated pleomorphic sarcoma (UPS), synovial sarcoma (SS), well-differentiated/dedifferentiated liposarcoma, and myxoid/round cell liposarcoma. Gene expression, immunohistochemistry for programmed cell death protein (PD-1) and programmed death-ligand 1 (PD-L1), and T-cell receptor Vß gene sequencing were performed on formalin-fixed, paraffin-embedded tumors from 81 patients. Differences in liposarcoma subsets also were evaluated. RESULTS: UPS and leiomyosarcoma had high expression levels of genes related to antigen presentation and T-cell infiltration. UPS were found to have higher levels of PD-L1 (P≤.001) and PD-1 (P≤.05) on immunohistochemistry and had the highest T-cell infiltration based on T-cell receptor sequencing, significantly more than SS, which had the lowest (P≤.05). T-cell infiltrates in UPS also were more oligoclonal compared with SS and liposarcoma (P≤.05). A model adjusted for STS histologic subtype found that for all sarcomas, T-cell infiltration and clonality were highly correlated with PD-1 and PD-L1 expression levels (P≤.01). CONCLUSIONS: In the current study, the authors provide the most detailed overview of the immune microenvironment in sarcoma subtypes to date. UPS, which is a more highly mutated STS subtype, provokes a substantial immune response, suggesting that it may be well suited to treatment with immune checkpoint inhibitors. The SS and liposarcoma subsets are less mutated but do express immunogenic self-antigens, and therefore strategies to improve antigen presentation and T-cell infiltration may allow for successful immunotherapy in patients with these diagnoses. Cancer 2017;123:3291-304. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Assuntos
Receptor de Morte Celular Programada 1/genética , Sarcoma/genética , Sarcoma/mortalidade , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/mortalidade , Linfócitos T/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Biópsia por Agulha , Células Clonais , Análise por Conglomerados , Estudos de Coortes , Terapia Combinada , Bases de Dados Factuais , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Sarcoma/patologia , Sarcoma/terapia , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/terapia , Análise de Sobrevida , Linfócitos T/imunologia , Adulto JovemRESUMO
TruAB Discovery is an approach that integrates cellular immunology, high-throughput immunosequencing, bioinformatics, and computational biology in order to discover naturally occurring human antibodies for prophylactic or therapeutic use. We adapted our previously described pairSEQ technology to pair B cell receptor heavy and light chains of SARS-CoV-2 spike protein-binding antibodies derived from enriched antigen-specific memory B cells and bulk antibody-secreting cells. We identified approximately 60,000 productive, in-frame, paired antibody sequences, from which 2,093 antibodies were selected for functional evaluation based on abundance, isotype and patterns of somatic hypermutation. The exceptionally diverse antibodies included RBD-binders with broad neutralizing activity against SARS-CoV-2 variants, and S2-binders with broad specificity against betacoronaviruses and the ability to block membrane fusion. A subset of these RBD- and S2-binding antibodies demonstrated robust protection against challenge in hamster and mouse models. This high-throughput approach can accelerate discovery of diverse, multifunctional antibodies against any target of interest.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos AntiviraisRESUMO
The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Etnicidade , Epitopos , Anticorpos Antivirais , Anticorpos Neutralizantes , Testes de NeutralizaçãoRESUMO
Immunotherapy targeting T cells is increasingly utilized to treat solid tumors including non-small cell lung cancer (NSCLC). This requires a better understanding of the T cells in the lungs of patients with NSCLC. Here, we report T cell repertoire analysis in a cohort of 236 early-stage NSCLC patients. T cell repertoire attributes are associated with clinicopathologic features, mutational and immune landscape. A considerable proportion of the most prevalent T cells in tumors are also prevalent in the uninvolved tumor-adjacent lungs and appear specific to shared background mutations or viral infections. Patients with higher T cell repertoire homology between the tumor and uninvolved tumor-adjacent lung, suggesting a less tumor-focused T cell response, exhibit inferior survival. These findings indicate that a concise understanding of antigens and T cells in NSCLC is needed to improve therapeutic efficacy and reduce toxicity with immunotherapy, particularly adoptive T cell therapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Clonais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Análise de SobrevidaRESUMO
Genomic intratumor heterogeneity (ITH) may be associated with postsurgical relapse of localized lung adenocarcinomas. Recently, mutations, through generation of neoantigens, were shown to alter tumor immunogenicity through T-cell responses. Here, we performed sequencing of the T-cell receptor (TCR) in 45 tumor regions from 11 localized lung adenocarcinomas and observed substantial intratumor differences in T-cell density and clonality with the majority of T-cell clones restricted to individual tumor regions. TCR ITH positively correlated with predicted neoantigen ITH, suggesting that spatial differences in the T-cell repertoire may be driven by distinct neoantigens in different tumor regions. Finally, a higher degree of TCR ITH was associated with an increased risk of postsurgical relapse and shorter disease-free survival, suggesting a potential clinical significance of T-cell repertoire heterogeneity.Significance: The present study provides insights into the ITH of the T-cell repertoire in localized lung adenocarcinomas and its potential biological and clinical impact. The results suggest that T-cell repertoire ITH may be tightly associated to genomic ITH and disease relapse. Cancer Discov; 7(10); 1088-97. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.
Assuntos
Adenocarcinoma/cirurgia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Sequenciamento do Exoma/métodos , Neoplasias Pulmonares/cirurgia , Recidiva Local de Neoplasia/genética , Receptores de Antígenos de Linfócitos T/genética , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Mutação , Recidiva Local de Neoplasia/imunologiaRESUMO
Kruppel-like factor 6 (KLF6) is a tumor suppressor gene inactivated in prostate and colon cancers, as well as in astrocytic gliomas. Here, we establish that KLF6 mediates growth inhibition through an interaction with cyclin D1, leading to reduced phosphorylation of the retinoblastoma protein (Rb) at Ser(795). Furthermore, introduction of KLF6 disrupts cyclin D1-cyclin-dependent kinase (cdk) 4 complexes and forces the redistribution of p21(Cip/Kip) onto cdk2, which promotes G(1) cell cycle arrest. Our data suggest that KLF6 converges with the Rb pathway to inhibit cyclin D1/cdk4 activity, resulting in growth suppression.
Assuntos
Ciclina D1/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas Proto-Oncogênicas , Transativadores/metabolismo , Quinases relacionadas a CDC2 e CDC28/metabolismo , Divisão Celular/genética , Ciclina D1/antagonistas & inibidores , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/biossíntese , Ciclinas/metabolismo , Inativação Gênica , Células HCT116 , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , RNA Interferente Pequeno/genética , Transativadores/antagonistas & inibidores , Transativadores/genética , TransfecçãoRESUMO
Transcriptional regulation of the p21(Cip1) cyclin-dependent kinase inhibitor is a well-established mechanism by which the cell orchestrates a proper spatial and temporal cell cycle progression. Now, in the January 2005 issue of Molecular Cell (2005; Vol 17, 237-49), a study by Jascur et al identifies a novel multi-protein complex that is critical in contributing to a p53-dependent G2 cell cycle checkpoint. The authors demonstrate the significance of stabilizing the p21 protein in the context of this complex.
Assuntos
Proteínas de Ciclo Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Fase G2 , Proteínas de Choque Térmico HSP90/fisiologia , Mitose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Imunofilinas , Modelos Biológicos , Proteínas de Ligação a TacrolimoAssuntos
Proliferação de Células , Cisplatino/farmacologia , Ciclina D1/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ciclina D1/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologiaRESUMO
GSK-3beta-dependent phosphorylation of cyclin D1 at a conserved C-terminal residue, Thr-286, promotes CRM1-dependent cyclin D1 nuclear export. Herein, we have identified a short stretch of residues adjacent to Thr-286 that mediates CRM1 association and thus cyclin D1 nuclear export. We found that disruption of this hydrophobic patch, stretching from amino acids 290 to 295 within cyclin D1, results in constitutively nuclear cyclin D1-CDK4 complexes with an increased propensity to potentiate transformation of murine fibroblasts. Our data support a model wherein deregulation of cyclin D1 nuclear export might contribute to human neoplastic growth.
Assuntos
Ciclina D1/química , Ciclina D1/fisiologia , Carioferinas/química , Receptores Citoplasmáticos e Nucleares/química , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Proliferação de Células , Ciclina D1/metabolismo , Epitopos/química , Fibroblastos/metabolismo , Humanos , Immunoblotting , Carioferinas/fisiologia , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Células NIH 3T3 , Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/fisiologia , Treonina/química , Fatores de Tempo , Proteína Exportina 1RESUMO
BACKGROUND & AIMS: Kruppel-like factor 6 (KLF6) is a ubiquitous zinc finger tumor suppressor that is often mutated in prostate cancer. Our aims were to establish the frequency of KLF6 inactivation in sporadic and inflammatory bowel disease (IBD)-associated colorectal cancers (CRC); to correlate these abnormalities with mutation and/or loss of TP53, APC, and K-RAS; and to characterize the behavior of mutant KLF6 in colon-derived cell lines. METHODS: We analyzed DNA isolated from 50 microdissected CRC cases, including 35 sporadic and 15 IBD-associated tumors. Microsatellite analysis and direct sequencing were used to establish the incidence of microsatellite instability, KLF6 and TP53 allelic imbalance, and KLF6, K-RAS, TP53, and APC mutation. Loss of growth suppressive function of the CRC-derived KLF6 mutants was characterized by in vitro thymidine incorporation assays and Western blotting. RESULTS: KLF6 was inactivated by loss and/or mutation in most sporadic and IBD-related CRCs. The KLF6 locus was deleted in at least 55% of tumors, and mutations were identified in 44%. Rates of KLF6 loss and mutation were similar to those of TP53 and K-RAS in the same samples. KLF6 mutations were present in tumors with either microsatellite or chromosomal instability and were more common, particularly in the IBD-related cancers, in the presence of wild-type APC. Unlike wild-type KLF6, cancer-derived KLF6 mutants neither suppressed growth nor induced p21 following transfection into cultured cells. CONCLUSIONS: Deregulation of KLF6 by a combination of allelic imbalance and mutation may play a role in the development of CRC.