Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 27(6): 2293-300, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23444428

RESUMO

The transition from unicellular to multicellular life, which occurred several times during evolution, requires tight interaction and communication of neighboring cells. The multicellular cyanobacterium Nostoc punctiforme ATCC 29133 forms filaments of hundreds of interacting cells exchanging metabolites and signal molecules and is able to differentiate specialized cells in response to environmental stimuli. Mutation of cell wall amidase AmiC2 leads to a severe phenotype with formation of aberrant septa in the distorted filaments, which completely lack cell communication and potential for cell differentiation. Here we demonstrate the function of the amidase AmiC2 in formation of cell-joining structures. The AmiC2 protein localizes to the young septum between cells and shows bona fide amidase activity in vivo and in vitro. Vancomycin staining identified the overall septum morphology in living cells. By electron microscopy of isolated peptidoglycan sacculi, the submicroscopic structure of the cell junctions could be visualized, revealing a novel function for a cell wall amidase: AmiC2 drills holes into the cross-walls, forming an array of ~155 nanopores with a diameter of ~20 nm each. These nanopores seem to constitute a framework for cell-joining proteins, penetrating the cell wall. The entire array of junctional nanopores appears as a novel bacterial organelle, establishing multicellularity in a filamentous prokaryote.


Assuntos
Interações Microbianas/fisiologia , Nostoc/citologia , Nostoc/fisiologia , Amidoidrolases/genética , Amidoidrolases/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Parede Celular/enzimologia , Parede Celular/ultraestrutura , Genes Bacterianos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Microbianas/genética , Microscopia Eletrônica de Transmissão , Mutação , Nanoporos/ultraestrutura , Nostoc/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
2.
J Bacteriol ; 194(19): 5218-27, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821973

RESUMO

Filamentous cyanobacteria of the order Nostocales display typical properties of multicellular organisms. In response to nitrogen starvation, some vegetative cells differentiate into heterocysts, where fixation of N(2) takes place. Heterocysts provide a micro-oxic compartment to protect nitrogenase from the oxygen produced by the vegetative cells. Differentiation involves fundamental remodeling of the gram-negative cell wall by deposition of a thick envelope and by formation of a neck-like structure at the contact site to the vegetative cells. Cell wall-hydrolyzing enzymes, like cell wall amidases, are involved in peptidoglycan maturation and turnover in unicellular bacteria. Recently, we showed that mutation of the amidase homologue amiC2 gene in Nostoc punctiforme ATCC 29133 distorts filament morphology and function. Here, we present the functional characterization of two amiC paralogues from Anabaena sp. strain PCC 7120. The amiC1 (alr0092) mutant was not able to differentiate heterocysts or to grow diazotrophically, whereas the amiC2 (alr0093) mutant did not show an altered phenotype under standard growth conditions. In agreement, fluorescence recovery after photobleaching (FRAP) studies showed a lack of cell-cell communication only in the AmiC1 mutant. Green fluorescent protein (GFP)-tagged AmiC1 was able to complement the mutant phenotype to wild-type properties. The protein localized in the septal regions of newly dividing cells and at the neck region of differentiating heterocysts. Upon nitrogen step-down, no mature heterocysts were developed in spite of ongoing heterocyst-specific gene expression. These results show the dependence of heterocyst development on amidase function and highlight a pivotal but so far underestimated cellular process, the remodeling of peptidoglycan, for the biology of filamentous cyanobacteria.


Assuntos
Amidoidrolases/metabolismo , Anabaena/enzimologia , Anabaena/metabolismo , Parede Celular/enzimologia , Interações Microbianas/fisiologia , Amidoidrolases/genética , Anabaena/citologia , Animais , Citoesqueleto/fisiologia , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica
3.
Mol Microbiol ; 79(6): 1655-69, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21244533

RESUMO

Filamentous cyanobacteria of the order Nostocales are primordial multicellular organisms, a property widely considered unique to eukaryotes. Their filaments are composed of hundreds of mutually dependent vegetative cells and regularly spaced N(2)-fixing heterocysts, exchanging metabolites and signalling molecules. Furthermore, they may differentiate specialized spore-like cells and motile filaments. However, the structural basis for cellular communication within the filament remained elusive. Here we present that mutation of a single gene, encoding cell wall amidase AmiC2, completely changes the morphology and abrogates cell differentiation and intercellular communication. Ultrastructural analysis revealed for the first time a contiguous peptidoglycan sacculus with individual cells connected by a single-layered septal cross-wall. The mutant forms irregular clusters of twisted cells connected by aberrant septa. Rapid intercellular molecule exchange takes place in wild-type filaments, but is completely abolished in the mutant, and this blockage obstructs any cell differentiation, indicating a fundamental importance of intercellular communication for cell differentiation in Nostoc. AmiC2-GFP localizes in the cell wall with a focus in the cross walls of dividing cells, implying that AmiC2 processes the newly synthesized septum into a functional cell-cell communication structure during cell division. AmiC2 thus can be considered as a novel morphogene required for cell-cell communication, cellular development and multicellularity.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Nostoc/enzimologia , Nostoc/crescimento & desenvolvimento , Amidoidrolases/genética , Proteínas de Bactérias/genética , Parede Celular/enzimologia , Parede Celular/genética , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Nostoc/genética , Transporte Proteico
4.
J Mol Biol ; 369(2): 386-99, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17434534

RESUMO

The maltose ATP-binding cassette transporter of Salmonella typhimurium is composed of the soluble periplasmic receptor, MalE, and a membrane-associated complex comprising one copy each of the pore-forming hydrophobic subunits, MalF and MalG, and of a homodimer of the ATP-hydrolyzing subunit, MalK. During the transport process the subunits are thought to undergo conformational changes that might transiently alter molecular contacts between MalFG and MalK(2). In order to map sites of subunit-subunit interactions we have used a comprehensive peptide mapping approach comprising large-scale microsynthesis of labelled probes and array techniques. In particular, we screened the binding of (i) MalFG-derived soluble biotinylated peptides to immobilized MalK, and (ii) radiolabelled MalK to MalFG-derived cellulose membrane-bound peptides. The first approach identified seven peptides (10mers) each of MalF and MalG that specifically bound to MalK. The peptides were localized to TMDs 3 and 6, periplasmic loop P4 and cytoplasmic loops C2 and C3 of MalF, while MalG-derived peptides localized to the N terminus, TMDs 4-6, periplasmic loop P1 and cytoplasmic loop C2. Peptides from C3 and C2, respectively, of MalF and MalG partially encompass the conserved EAA-motif, known to be crucial for interaction with MalK. These results were basically confirmed by screening MalFG-derived peptide arrays consisting of 16mers or 31mers with radiolabelled MalK. This approach also allowed us to perform complete substitutional analyses of peptides in question. The results led to the construction of MalFG variants that were subsequently analyzed for functional consequences in vivo. Growth experiments revealed that most of the mutations had no phenotype, suggesting that the mutated residues themselves are not critical but part of a discontinuous binding site. However, two novel mutations affecting residues from the EAA motifs of MalF (Ile417Glu) and MalG (Phe203Gln/Asn), respectively, displayed severe growth defects, indicating their functional importance. Together, these experimental outcomes identify specific molecular contacts made between MalK and MalFG that extend beyond the well-characterized EAA motif.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Mapeamento de Interação de Proteínas , Subunidades Proteicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Maltose/metabolismo , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Mutação Puntual , Análise Serial de Proteínas , Ligação Proteica , Estrutura Secundária de Proteína , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Alinhamento de Sequência
5.
Biotechnol Biofuels ; 10: 56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286551

RESUMO

BACKGROUND: Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms, which are engineered to synthesize valuable products directly from CO2 and sunlight. As cyanobacteria can be cultivated in large scale on non-arable land, these phototrophic bacteria have become attractive organisms for production of biofuels. Synechococcus sp. PCC 7002, one of the cyanobacterial model organisms, provides many attractive properties for biofuel production such as tolerance of seawater and high light intensities. RESULTS: Here, we performed a systems analysis of an engineered ethanol-producing strain of the cyanobacterium Synechococcus sp. PCC 7002, which was grown in artificial seawater medium over 30 days applying a 12:12 h day-night cycle. Biosynthesis of ethanol resulted in a final accumulation of 0.25% (v/v) ethanol, including ethanol lost due to evaporation. The cultivation experiment revealed three production phases. The highest production rate was observed in the initial phase when cells were actively growing. In phase II growth of the producer strain stopped, but ethanol production rate was still high. Phase III was characterized by a decrease of both ethanol production and optical density of the culture. Metabolomics revealed that the carbon drain due to ethanol diffusion from the cell resulted in the expected reduction of pyruvate-based intermediates. Carbon-saving strategies successfully compensated the decrease of central intermediates of carbon metabolism during the first phase of fermentation. However, during long-term ethanol production the producer strain showed clear indications of intracellular carbon limitation. Despite the decreased levels of glycolytic and tricarboxylic acid cycle intermediates, soluble sugars and even glycogen accumulated in the producer strain. The changes in carbon assimilation patterns are partly supported by proteome analysis, which detected decreased levels of many enzymes and also revealed the stress phenotype of ethanol-producing cells. Strategies towards improved ethanol production are discussed. CONCLUSIONS: Systems analysis of ethanol production in Synechococcus sp. PCC 7002 revealed initial compensation followed by increasing metabolic limitation due to excessive carbon drain from primary metabolism.

6.
Mol Microbiol ; 66(5): 1107-22, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17961142

RESUMO

The ATP binding cassette (ABC-) transporter mediating the uptake of maltose/maltodextrins in Escherichia coli/Salmonella enterica serovar Typhimurium is one of the best characterized systems and serves as a model for studying the molecular mechanism by which ABC importers exert their functions. The transporter is composed of a periplasmic maltose binding protein (MalE), and a membrane-bound complex (MalFGK(2)), comprising the pore-forming hydrophobic subunits, MalF and MalG, and two copies of the ABC subunit, MalK. We report on the isolation of suppressor mutations within malFG that partially restore transport of a maltose-negative mutant carrying the malK809 allele (MalKQ140K). The mutation affects the conserved LSGGQ motif that is involved in ATP binding. Three out of four suppressor mutations map in periplasmic loops P2 and P1 respectively of MalFG. Cross-linking data revealed proximity of these regions to MalE. In particular, as demonstrated in vitro and in vivo, Gly-13 of substrate-free and substrate-loaded MalE is in close contact to Pro-78 of MalG. These data suggest that MalE is permanently in close contact to MalG-P1 via its N-terminal domain. Together, our results are interpreted in favour of the notion that substrate availability is communicated from MalE to the MalK dimer via extracytoplasmic loops of MalFG, and are discussed with respect to a current transport model.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Mapeamento de Interação de Proteínas , Salmonella typhimurium/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Salmonella typhimurium/genética , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA