Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Clin Sci (Lond) ; 138(4): 173-187, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38315575

RESUMO

Semaglutide is an anti-diabetes and weight loss drug that decreases food intake, slows gastric emptying, and increases insulin secretion. Patients begin treatment with low-dose semaglutide and increase dosage over time as efficacy plateaus. With increasing dosage, there is also greater incidence of gastrointestinal side effects. One reason for the plateau in semaglutide efficacy despite continued low food intake is due to compensatory actions whereby the body becomes more metabolically efficient to defend against further weight loss. Mitochondrial uncoupler drugs decrease metabolic efficiency, therefore we sought to investigate the combination therapy of semaglutide with the mitochondrial uncoupler BAM15 in diet-induced obese mice. Mice were fed high-fat western diet (WD) and stratified into six treatment groups including WD control, BAM15, low-dose semaglutide without or with BAM15, and high-dose semaglutide without or with BAM15. Combining BAM15 with either semaglutide dose decreased body fat and liver triglycerides, which was not achieved by any monotherapy, while high-dose semaglutide with BAM15 had the greatest effect on glucose homeostasis. This study demonstrates a novel approach to improve weight loss without loss of lean mass and improve glucose control by simultaneously targeting energy intake and energy efficiency. Such a combination may decrease the need for semaglutide dose escalation and hence minimize potential gastrointestinal side effects.


Assuntos
Ingestão de Energia , Redução de Peso , Humanos , Animais , Camundongos , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo
2.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34663697

RESUMO

Trained immunity defines long-lasting adaptations of innate immunity based on transcriptional and epigenetic modifications of myeloid cells and their bone marrow progenitors [M. Divangahi et al., Nat. Immunol. 22, 2-6 (2021)]. Innate immune cells, however, do not exclusively differentiate between foreign and self but also react to host-derived molecules referred to as alarmins. Extracellular "labile" heme, released during infections, is a bona fide alarmin promoting myeloid cell activation [M. P. Soares, M. T. Bozza, Curr. Opin. Immunol. 38, 94-100 (2016)]. Here, we report that labile heme is a previously unrecognized inducer of trained immunity that confers long-term regulation of lineage specification of hematopoietic stem cells and progenitor cells. In contrast to previous reports on trained immunity, essentially mediated by pathogen-associated molecular patterns, heme training depends on spleen tyrosine kinase signal transduction pathway acting upstream of c-Jun N-terminal kinases. Heme training promotes resistance to sepsis, is associated with the expansion of self-renewing hematopoetic stem cells primed toward myelopoiesis and to the occurrence of a specific myeloid cell population. This is potentially evoked by sustained activity of Nfix, Runx1, and Nfe2l2 and dissociation of the transcriptional repressor Bach2. Previously reported trained immunity inducers are, however, infrequently present in the host, whereas heme abundantly occurs during noninfectious and infectious disease. This difference might explain the vanishing protection exerted by heme training in sepsis over time with sustained long-term myeloid adaptations. Hence, we propose that trained immunity is an integral component of innate immunity with distinct functional differences on infectious disease outcome depending on its induction by pathogenic or endogenous molecules.


Assuntos
Epigênese Genética , Heme/fisiologia , Imunidade Inata , Mielopoese , Animais , Humanos , Camundongos
3.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256063

RESUMO

'Inner mitochondrial membrane peptidase 2 like' (IMMP2L) is a nuclear-encoded mitochondrial peptidase that has been conserved through evolutionary history, as has its target enzyme, 'mitochondrial glycerol phosphate dehydrogenase 2' (GPD2). IMMP2L is known to cleave the mitochondrial transit peptide from GPD2 and another nuclear-encoded mitochondrial respiratory-related protein, cytochrome C1 (CYC1). However, it is not known whether IMMP2L peptidase activates or alters the activity or respiratory-related functions of GPD2 or CYC1. Previous investigations found compelling evidence of behavioural change in the Immp2lKD-/- KO mouse, and in this study, EchoMRI analysis found that the organs of the Immp2lKD-/- KO mouse were smaller and that the KO mouse had significantly less lean mass and overall body weight compared with wildtype littermates (p < 0.05). Moreover, all organs analysed from the Immp2lKD-/- KO had lower relative levels of mitochondrial reactive oxygen species (mitoROS). The kidneys of the Immp2lKD-/- KO mouse displayed the greatest decrease in mitoROS levels that were over 50% less compared with wildtype litter mates. Mitochondrial respiration was also lowest in the kidney of the Immp2lKD-/- KO mouse compared with other tissues when using succinate as the respiratory substrate, whereas respiration was similar to the wildtype when glutamate was used as the substrate. When glycerol-3-phosphate (G3P) was used as the substrate for Gpd2, we observed ~20% and ~7% respective decreases in respiration in female and male Immp2lKD-/- KO mice over time. Together, these findings indicate that the respiratory-related functions of mGpd2 and Cyc1 have been compromised to different degrees in different tissues and genders of the Immp2lKD-/- KO mouse. Structural analyses using AlphaFold2-Multimer further predicted that the interaction between Cyc1 and mitochondrial-encoded cytochrome b (Cyb) in Complex III had been altered, as had the homodimeric structure of the mGpd2 enzyme within the inner mitochondrial membrane of the Immp2lKD-/- KO mouse. mGpd2 functions as an integral component of the glycerol phosphate shuttle (GPS), which positively regulates both mitochondrial respiration and glycolysis. Interestingly, we found that nonmitochondrial respiration (NMR) was also dramatically lowered in the Immp2lKD-/- KO mouse. Primary mouse embryonic fibroblast (MEF) cell lines derived from the Immp2lKD-/- KO mouse displayed a ~27% decrease in total respiration, comprising a ~50% decrease in NMR and a ~12% decrease in total mitochondrial respiration, where the latter was consistent with the cumulative decreases in substrate-specific mediated mitochondrial respiration reported here. This study is the first to report the role of Immp2l in enhancing Gpd2 structure and function, mitochondrial respiration, nonmitochondrial respiration, organ size and homeostasis.


Assuntos
Atrofia Bulboespinal Ligada ao X , Glicerol , Glicerofosfatos , Feminino , Masculino , Animais , Camundongos , Fibroblastos , Ácido Glutâmico , Glicerolfosfato Desidrogenase/genética , Peptídeo Hidrolases , Fosfatos
4.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077188

RESUMO

Obesity-related insulin resistance is a highly prevalent and growing health concern, which places stress on the pancreatic islets of Langerhans by increasing insulin secretion to lower blood glucose levels. The glucose transporters GLUT1 and GLUT3 play a key role in glucose-stimulated insulin secretion in human islets, while GLUT2 is the key isoform in rodent islets. However, it is unclear whether other glucose transporters also contribute to insulin secretion by pancreatic islets. Herein, we show that SLC2A6 (GLUT6) is markedly upregulated in pancreatic islets from genetically obese leptin-mutant (ob/ob) and leptin receptor-mutant (db/db) mice, compared to lean controls. Furthermore, we observe that islet SLC2A6 expression positively correlates with body mass index in human patients with type 2 diabetes. To investigate whether GLUT6 plays a functional role in islets, we crossed GLUT6 knockout mice with C57BL/6 ob/ob mice. Pancreatic islets isolated from ob/ob mice lacking GLUT6 secreted more insulin in response to high-dose glucose, compared to ob/ob mice that were wild type for GLUT6. The loss of GLUT6 in ob/ob mice had no adverse impact on body mass, body composition, or glucose tolerance at a whole-body level. This study demonstrates that GLUT6 plays a role in pancreatic islet insulin secretion in vitro but is not a dominant glucose transporter that alters whole-body metabolic physiology in ob/ob mice.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Obesidade/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166908, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793464

RESUMO

Metabolic disorders such as type 2 diabetes, fatty liver disease, hyperlipidemia, and obesity commonly co-occur but clinical treatment options do not effectively target all disorders. Calorie restriction, semaglutide, rosiglitazone, and mitochondrial uncouplers have all demonstrated efficacy against one or more obesity-related metabolic disorders, but it currently remains unclear which therapeutic strategy best targets the combination of hyperglycaemia, liver fat, hypertriglyceridemia, and adiposity. Herein we performed a head-to-head comparison of 5 treatment interventions in the female db/db mouse model of severe metabolic disease. Treatments included ∼60 % calorie restriction (CR), semaglutide, rosiglitazone, BAM15, and niclosamide ethanolamine (NEN). Results showed that BAM15 and CR improved body weight and liver steatosis to levels superior to semaglutide, NEN, and rosiglitazone, while BAM15, semaglutide, and rosiglitazone improved glucose tolerance better than CR and NEN. BAM15, CR, semaglutide, and rosiglitazone all had efficacy against hypertriglyceridaemia. These data provide a comprehensive head-to-head comparison of several key treatment strategies for metabolic disease and highlight the efficacy of mitochondrial uncoupling to correct multiple facets of the metabolic disease milieu in female db/db mice.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Feminino , Niclosamida/uso terapêutico , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , Etanolamina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Restrição Calórica , Etanolaminas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo
6.
Diabetes ; 73(3): 374-384, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870907

RESUMO

Excess body fat is a risk factor for metabolic diseases and is a leading preventable cause of morbidity and mortality worldwide. There is a strong need to find new treatments that decrease the burden of obesity and lower the risk of obesity-related comorbidities, including cardiovascular disease and type 2 diabetes. Pharmacologic mitochondrial uncouplers represent a potential treatment for obesity through their ability to increase nutrient oxidation. Herein, we report the in vitro and in vivo characterization of compound SHD865, the first compound to be studied in vivo in a newly discovered class of imidazolopyrazine mitochondrial uncouplers. SHD865 is a derivative of the furazanopyrazine uncoupler BAM15. SHD865 is a milder mitochondrial uncoupler than BAM15 that results in a lower maximal respiration rate. In a mouse model of diet-induced adiposity, 6-week treatment with SHD865 completely restored normal body composition and glucose tolerance to levels like those of chow-fed controls, without altering food intake. SHD865 treatment also corrected liver steatosis and plasma hyperlipidemia to normal levels comparable with chow-fed controls. SHD865 has maximal oral bioavailability in rats and slow clearance in human microsomes and hepatocytes. Collectively, these data identify the potential of imidazolopyrazine mitochondrial uncouplers as drug candidates for the treatment of obesity-related disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Camundongos , Ratos , Humanos , Animais , Adiposidade , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/etiologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
7.
J Med Chem ; 66(6): 3876-3895, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36882080

RESUMO

Small-molecule mitochondrial uncouplers are gaining recognition as potential therapeutics for metabolic diseases such as obesity, diabetes, and nonalcoholic steatohepatitis (NASH). Specifically, heterocycles derived from BAM15, a potent and mitochondria-selective uncoupler, have yielded promising preclinical candidates that are efficacious in animal models of obesity and NASH. In this study, we report the structure-activity relationship studies of 6-amino-[1,2,5]oxadiazolo[3,4-b]pyridin-5-ol derivatives. Using oxygen consumption rate as a readout of mitochondrial uncoupling, we established 5-hydroxyoxadiazolopyridines as mild uncouplers. In particular, SHM115, which contains a pentafluoro aniline, had an EC50 value of 17 µM and exhibited 75% oral bioavailability. SHM115 treatment increased the energy expenditure and lowered the body fat mass in two diet-induced obesity mouse models, including an obesity prevention model and an obesity reversal model. Taken together, our findings demonstrate the therapeutic potential of mild mitochondrial uncouplers for the prevention of diet-induced obesity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Dieta , Consumo de Oxigênio
8.
Mol Metab ; 69: 101684, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731653

RESUMO

OBJECTIVE: Calorie restriction is a first-line treatment for overweight individuals with metabolic impairments. However, few patients can adhere to long-term calorie restriction. An alternative approach to calorie restriction that also causes negative energy balance is mitochondrial uncoupling, which decreases the amount of energy that can be extracted from food. Herein we compare the metabolic effects of calorie restriction with the mitochondrial uncoupler BAM15 in the db/db mouse model of severe hyperglycemia, obesity, hypertriglyceridemia, and fatty liver. METHODS: Male db/db mice were treated with ∼50% calorie restriction, BAM15 at two doses of 0.1% and 0.2% (w/w) admixed in diet, or 0.2% BAM15 with time-restricted feeding from 5 weeks of age. Mice were metabolically phenotyped over 4 weeks with assessment of key readouts including body weight, glucose tolerance, and liver steatosis. At termination, liver tissues were analysed by metabolomics and qPCR. RESULTS: Calorie restriction and high-dose 0.2% BAM15 decreased body weight to a similar extent, but mice treated with BAM15 had far better improvement in glucose control. High-dose BAM15 treatment completely normalized fasting glucose and glucose tolerance to levels similar to lean db/+ control mice. Low-dose 0.1% BAM15 did not affect body mass but partially improved glucose tolerance to a similar degree as 50% calorie restriction. Both calorie restriction and high-dose BAM15 significantly improved hyperglucagonemia and liver and serum triglyceride levels. Combining high-dose BAM15 with time-restricted feeding to match the time that calorie restricted mice were fed resulted in the best metabolic phenotype most similar to lean db/+ controls. BAM15-mediated improvements in glucose control were associated with decreased glucagon levels and decreased expression of enzymes involved in hepatic gluconeogenesis. CONCLUSIONS: BAM15 and calorie restriction treatments improved most metabolic disease phenotypes in db/db mice. However, mice fed BAM15 had superior effects on glucose control compared to the calorie restricted group that consumed half as much food. Submaximal dosing with BAM15 demonstrated that its beneficial effects on glucose control are independent of weight loss. These data highlight the potential for mitochondrial uncoupler pharmacotherapies in the treatment of metabolic disease.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Masculino , Camundongos , Animais , Restrição Calórica , Glicemia/análise , Peso Corporal , Glucose , Camundongos Endogâmicos
9.
EMBO Mol Med ; 13(10): e14436, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34472699

RESUMO

Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality.


Assuntos
Hepatopatias , Sepse , Animais , Camundongos , Infiltração de Neutrófilos , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Sepse/tratamento farmacológico
10.
Cancer Metab ; 9(1): 36, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627389

RESUMO

BACKGROUND: Enhanced metabolic plasticity and diversification of energy production is a hallmark of highly proliferative breast cancers. This contributes to poor pharmacotherapy efficacy, recurrence, and metastases. We have previously identified a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 that selectively reduces bioenergetic coupling efficiency and is orally available. Here, we evaluated the antineoplastic properties of uncoupling oxidative phosphorylation from ATP production in breast cancer using BAM15. METHODS: The anticancer effects of BAM15 were evaluated in human triple-negative MDA-MB-231 and murine luminal B, ERα-negative EO771 cells as well as in an orthotopic allograft model of highly proliferative mammary cancer in mice fed a standard or high fat diet (HFD). Untargeted transcriptomic profiling of MDA-MB-231 cells was conducted after 16-h exposure to BAM15. Additionally, oxidative phosphorylation and electron transfer capacity was determined in permeabilized cells and excised tumor homogenates after treatment with BAM15. RESULTS: BAM15 increased proton leak and over time, diminished cell proliferation, migration, and ATP production in both MDA-MB-231 and EO771 cells. Additionally, BAM15 decreased mitochondrial membrane potential, while inducing apoptosis and reactive oxygen species accumulation in MDA-MB-231 and EO771 cells. Untargeted transcriptomic profiling of MDA-MB-231 cells further revealed inhibition of signatures associated with cell survival and energy production by BAM15. In lean mice, BAM15 lowered body weight independent of food intake and slowed tumor progression compared to vehicle-treated controls. In HFD mice, BAM15 reduced tumor growth relative to vehicle and calorie-restricted weight-matched controls mediated in part by impaired cell proliferation, mitochondrial respiratory function, and ATP production. LC-MS/MS profiling of plasma and tissues from BAM15-treated animals revealed distribution of BAM15 in adipose, liver, and tumor tissue with low abundance in skeletal muscle. CONCLUSIONS: Collectively, these data indicate that mitochondrial uncoupling may be an effective strategy to limit proliferation of aggressive forms of breast cancer. More broadly, these findings highlight the metabolic vulnerabilities of highly proliferative breast cancers which may be leveraged in overcoming poor responsiveness to existing therapies.

11.
Metabolism ; 117: 154724, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548253

RESUMO

AIMS: Mitochondrial uncouplers decrease caloric efficiency and have potential therapeutic benefits for the treatment of obesity and related metabolic disorders. Herein we investigate the metabolic and physiologic effects of a recently identified small molecule mitochondrial uncoupler named SHC517 in a mouse model of diet-induced obesity. METHODS: SHC517 was administered as an admixture in food. The effect of SHC517 on in vivo energy expenditure and respiratory quotient was determined by indirect calorimetry. A dose-finding obesity prevention study was performed by starting SHC517 treatment concomitant with high fat diet for a period of 12 days. An obesity reversal study was performed by feeding mice western diet for 4 weeks prior to SHC517 treatment for 7 weeks. Biochemical assays were used to determine changes in glucose, insulin, triglycerides, and cholesterol. SHC517 concentrations were determined by mass spectrometry. RESULTS: SHC517 increased lipid oxidation without affecting body temperature. SHC517 prevented diet-induced obesity when administered at 0.05% and 0.1% w/w in high fat diet and reversed established obesity when tested at the 0.05% dose. In the obesity reversal model, SHC517 restored adiposity to levels similar to chow-fed control mice without affecting food intake or lean body mass. SHC517 improved glucose tolerance and fasting glucose levels when administered in both the obesity prevention and obesity reversal modes. CONCLUSIONS: SHC517 is a mitochondrial uncoupler with potent anti-obesity and insulin sensitizing effects in mice. SHC517 reversed obesity without altering food intake or compromising lean mass, effects that are highly sought-after in anti-obesity therapeutics.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Calorimetria Indireta/métodos , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/metabolismo
12.
Int J Biochem Cell Biol ; 127: 105834, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827762

RESUMO

Identifying co-expression of lipid species is challenging, but indispensable to identify novel therapeutic targets for breast cancer treatment. Lipid metabolism is often dysregulated in cancer cells, and changes in lipid metabolism affect cellular processes such as proliferation, autophagy, and tumor development. In addition to mRNA analysis of sphingolipid metabolizing enzymes, we performed liquid chromatography time-of-flight mass spectrometry analysis in three breast cancer cell lines. These breast cancer cell lines differ in estrogen receptor and G-protein coupled estrogen receptor 1 status. Our data show that sphingolipids and non-sphingolipids are strongly increased in SKBr3 cells. SKBr3 cells are estrogen receptor negative and G-protein coupled estrogen receptor 1 positive. Treatment with G15, a G-protein coupled estrogen receptor 1 antagonist, abolishes the effect of increased sphingolipid and non-sphingolipid levels in SKBr3 cells. In particular, ether lipids are expressed at much higher levels in cancer compared to normal cells and are strongly increased in SKBr3 cells. Our analysis reveals that this is accompanied by increased sphingolipid levels such as ceramide, sphingadiene-ceramide and sphingomyelin. This shows the importance of focusing on more than one lipid class when investigating molecular mechanisms in breast cancer cells. Our analysis allows unbiased screening for different lipid classes leading to identification of co-expression patterns of lipids in the context of breast cancer. Co-expression of different lipid classes could influence tumorigenic potential of breast cancer cells. Identification of co-regulated lipid species is important to achieve improved breast cancer treatment outcome.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Lipidômica/métodos , Lipídeos/biossíntese , Éteres Fosfolipídicos/metabolismo , Esfingolipídeos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ceramidas/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
13.
Sci Rep ; 10(1): 13110, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753644

RESUMO

Sepsis-associated liver dysfunction manifesting as cholestasis is common during multiple organ failure. Three hepatocytic dysfunctions are considered as major hallmarks of cholestasis in sepsis: impairments of microvilli covering canalicular membranes, disruptions of tight junctions sealing bile-collecting canaliculae and disruptions of Mrp2-mediated hepatobiliary transport. PI3Kγ loss-of-function was suggested as beneficial in early sepsis. Yet, the PI3Kγ-regulated cellular processes in hepatocytes remained largely unclear. We analysed all three sepsis hallmarks for responsiveness to massive PI3K/Akt signalling and PI3Kγ loss-of-function, respectively. Surprisingly, neither microvilli nor tight junctions were strongly modulated, as shown by electron microscopical studies of mouse liver samples. Instead, quantitative electron microscopy proved that solely Mrp2 surface availability, i.e. the third hallmark, responded strongly to PI3K/Akt signalling. Mrp2 plasma membrane levels were massively reduced upon PI3K/Akt signalling. Importantly, Mrp2 levels at the plasma membrane of PI3Kγ KO hepatocytes remained unaffected upon PI3K/Akt signalling stimulation. The effect explicitly relied on PI3Kγ's enzymatic ability, as shown by PI3Kγ kinase-dead mice. Keeping the surface availability of the biliary transporter Mrp2 therefore is a cell biological process that may underlie the observation that PI3Kγ loss-of-function protects from hepatic excretory dysfunction during early sepsis and Mrp2 should thus take center stage in pharmacological interventions.


Assuntos
Quimiocinas CC/metabolismo , Colestase/complicações , Colestase/patologia , Proteínas Inflamatórias de Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sepse/complicações , Animais , Linhagem Celular , Membrana Celular/metabolismo , Colestase/metabolismo , Técnicas de Inativação de Genes , Camundongos , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
J Med Chem ; 63(11): 6203-6224, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32392051

RESUMO

Small molecule mitochondrial uncouplers have recently garnered great interest for their potential in treating nonalcoholic steatohepatitis (NASH). In this study, we report the structure-activity relationship profiling of a 6-amino[1,2,5]oxadiazolo[3,4-b]pyrazin-5-ol core, which utilizes the hydroxy moiety as the proton transporter across the mitochondrial inner membrane. We demonstrate that a wide array of substituents is tolerated with this novel scaffold that increased cellular metabolic rates in vitro using changes in oxygen consumption rate as a readout. In particular, compound SHS4121705 (12i) displayed an EC50 of 4.3 µM in L6 myoblast cells and excellent oral bioavailability and liver exposure in mice. In the STAM mouse model of NASH, administration of 12i at 25 mg kg-1 day-1 lowered liver triglyceride levels and improved liver markers such as alanine aminotransferase, NAFLD activity score, and fibrosis. Importantly, no changes in body temperature or food intake were observed. As potential treatment of NASH, mitochondrial uncouplers show promise for future development.


Assuntos
Pirazinas/química , Alanina Transaminase/metabolismo , Compostos de Anilina/química , Animais , Linhagem Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Meia-Vida , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Consumo de Oxigênio/efeitos dos fármacos , Pirazinas/farmacocinética , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Ratos , Relação Estrutura-Atividade , Triglicerídeos/metabolismo , Proteína Desacopladora 1/química , Proteína Desacopladora 1/metabolismo
15.
Nat Commun ; 11(1): 2397, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409697

RESUMO

Obesity is a health problem affecting more than 40% of US adults and 13% of the global population. Anti-obesity treatments including diet, exercise, surgery and pharmacotherapies have so far failed to reverse obesity incidence. Herein, we target obesity with a pharmacotherapeutic approach that decreases caloric efficiency by mitochondrial uncoupling. We show that a recently identified mitochondrial uncoupler BAM15 is orally bioavailable, increases nutrient oxidation, and decreases body fat mass without altering food intake, lean body mass, body temperature, or biochemical and haematological markers of toxicity. BAM15 decreases hepatic fat, decreases inflammatory lipids, and has strong antioxidant effects. Hyperinsulinemic-euglycemic clamp studies show that BAM15 improves insulin sensitivity in multiple tissue types. Collectively, these data demonstrate that pharmacologic mitochondrial uncoupling with BAM15 has powerful anti-obesity and insulin sensitizing effects without compromising lean mass or affecting food intake.


Assuntos
Diaminas/administração & dosagem , Resistência à Insulina , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Oxidiazóis/administração & dosagem , Pirazinas/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Administração Oral , Animais , Glicemia/análise , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diaminas/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Técnica Clamp de Glucose , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Obesidade/sangue , Obesidade/etiologia , Obesidade/metabolismo , Oxidiazóis/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Pirazinas/efeitos adversos
16.
Adv Biol Regul ; 58: 1-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25512233

RESUMO

With the steady rise in the incidence of obesity and its associated comorbidities, in the last decades research aimed at understanding molecular mechanisms that control body weight has gained new interest. Fat gain is frequently associated with chronic adipose tissue inflammation and with peripheral as well as central metabolic derangements, resulting in an impaired hypothalamic regulation of energy homeostasis. Recent attention has focused on the role of phosphatidylinositol 3-kinase (PI3K) in both immune and metabolic response pathways, being involved in the pathophysiology of obesity and its associated metabolic diseases. In this review, we focus on distinct PI3K isoforms, especially class I PI3Ks, mediating inflammatory cells recruitment to the enlarged fat as well as intracellular responses to key hormonal regulators of fat storage, both in adipocytes and in the central nervous system. This integrated view of PI3K functions may ultimately help to develop new therapeutic interventions for the treatment of obesity.


Assuntos
Tecido Adiposo/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Transdução de Sinais/imunologia , Adipócitos/imunologia , Adipócitos/patologia , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Metabolismo Energético/genética , Metabolismo Energético/imunologia , Regulação da Expressão Gênica , Homeostase , Humanos , Hipotálamo/imunologia , Hipotálamo/patologia , Imunidade Inata , Inflamação , Resistência à Insulina , Leptina/genética , Leptina/imunologia , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/imunologia
17.
Sci Signal ; 7(352): ra110, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25406378

RESUMO

Obesity is defined as an abnormal increase in white adipose tissue and has become a major medical burden worldwide. Signals from the brain control not only appetite but also energy expenditure, both of which contribute to body weight. We showed that genetic or pharmacological inhibition of two phosphatidylinositol 3-kinases (PI3Kß and PI3Kγ) in mice reduced fat mass by promoting increased energy expenditure. This effect was accompanied by stimulation of lipolysis and the acquisition of the energy-burning characteristics of brown adipocytes by white adipocytes, a process referred to as "browning." The browning of the white adipocytes involved increased norepinephrine release from the sympathetic nervous system. We found that PI3Kß and PI3Kγ together promoted a negative feedback loop downstream of the melanocortin 4 receptor in the central nervous system, which controls appetite and energy expenditure in the periphery. Analysis of mice with drug-induced sympathetic denervation suggested that these kinases controlled the sympathetic drive in the brain. Administration of inhibitors of both PI3Kß and PI3Kγ to mice by intracerebroventricular delivery induced a 10% reduction in fat mass as quickly as 10 days. These results suggest that combined inhibition of PI3Kß and PI3Kγ might represent a promising treatment for obesity.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Obesidade/enzimologia , Obesidade/fisiopatologia , Inibidores de Fosfoinositídeo-3 Quinase , Sistema Nervoso Simpático/fisiologia , alfa-MSH/metabolismo , Células 3T3 , Adipócitos Brancos/metabolismo , Tecido Adiposo/crescimento & desenvolvimento , Animais , Western Blotting , AMP Cíclico/metabolismo , Metabolismo Energético/fisiologia , Retroalimentação Fisiológica/fisiologia , Imunofluorescência , Técnicas de Introdução de Genes , Hipotálamo/anatomia & histologia , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Lipólise/efeitos dos fármacos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA