Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 489-493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172641

RESUMO

The quantum Hall effect is a prototypical realization of a topological state of matter. It emerges from a subtle interplay between topology, interactions and disorder1-9. The disorder enables the formation of localized states in the bulk that stabilize the quantum Hall states with respect to the magnetic field and carrier density3. Still, the details of the localized states and their contribution to transport remain beyond the reach of most experimental techniques10-31. Here we describe an extensive study of the bulk's heat conductance. Using a novel 'multiterminal' short device (on a scale of 10 µm), we separate the longitudinal thermal conductance, [Formula: see text] (owing to the bulk's contribution), from the topological transverse value [Formula: see text] by eliminating the contribution of the edge modes24. When the magnetic field is tuned away from the conductance plateau centre, the localized states in the bulk conduct heat efficiently ([Formula: see text]), whereas the bulk remains electrically insulating. Fractional states in the first excited Landau level, such as the [Formula: see text] and [Formula: see text], conduct heat throughout the plateau with a finite [Formula: see text]. We propose a theoretical model that identifies the localized states as the cause of the finite heat conductance, agreeing qualitatively with our experimental findings.

2.
Nature ; 607(7920): 692-696, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35896649

RESUMO

Doped Mott insulators exhibit some of the most intriguing quantum phases of matter, including quantum spin liquids, unconventional superconductors and non-Fermi liquid metals1-3. Such phases often arise when itinerant electrons are close to a Mott insulating state, and thus experience strong spatial correlations. Proximity between different layers of van der Waals heterostructures naturally realizes a platform for experimentally studying the relationship between localized, correlated electrons and itinerant electrons. Here we explore this relationship by studying the magnetic landscape of tantalum disulfide 4Hb-TaS2, which realizes an alternating stacking of a candidate spin liquid and a superconductor4. We report on a spontaneous vortex phase whose vortex density can be trained in the normal state. We show that time-reversal symmetry is broken in the normal state, indicating the presence of a magnetic phase independent of the superconductor. Notably, this phase does not generate ferromagnetic signals that are detectable using conventional techniques. We use scanning superconducting quantum interference device microscopy to show that it is incompatible with ferromagnetic ordering. The discovery of this unusual magnetic phase illustrates how combining superconductivity with a strongly correlated system can lead to unexpected physics.

3.
Nature ; 592(7853): 214-219, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828314

RESUMO

In the 1950s, Pomeranchuk1 predicted that, counterintuitively, liquid 3He may solidify on heating. This effect arises owing to high excess nuclear spin entropy in the solid phase, where the atoms are spatially localized. Here we find that an analogous effect occurs in magic-angle twisted bilayer graphene2-6. Using both local and global electronic entropy measurements, we show that near a filling of one electron per moiré unit cell, there is a marked increase in the electronic entropy to about 1kB per unit cell (kB is the Boltzmann constant). This large excess entropy is quenched by an in-plane magnetic field, pointing to its magnetic origin. A sharp drop in the compressibility as a function of the electron density, associated with a reset of the Fermi level back to the vicinity of the Dirac point, marks a clear boundary between two phases. We map this jump as a function of electron density, temperature and magnetic field. This reveals a phase diagram that is consistent with a Pomeranchuk-like temperature- and field-driven transition from a low-entropy electronic liquid to a high-entropy correlated state with nearly free magnetic moments. The correlated state features an unusual combination of seemingly contradictory properties, some associated with itinerant electrons-such as the absence of a thermodynamic gap, metallicity and a Dirac-like compressibility-and others associated with localized moments, such as a large entropy and its disappearance under a magnetic field. Moreover, the energy scales characterizing these two sets of properties are very different: whereas the compressibility jump has an onset at a temperature of about 30 kelvin, the bandwidth of magnetic excitations is about 3 kelvin or smaller. The hybrid nature of the present correlated state and the large separation of energy scales have implications for the thermodynamic and transport properties of the correlated states in twisted bilayer graphene.

4.
Nature ; 592(7853): 220-224, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828322

RESUMO

In condensed-matter systems, higher temperatures typically disfavour ordered phases, leading to an upper critical temperature for magnetism, superconductivity and other phenomena. An exception is the Pomeranchuk effect in 3He, in which the liquid ground state freezes upon increasing the temperature1, owing to the large entropy of the paramagnetic solid phase. Here we show that a similar mechanism describes the finite-temperature dynamics of spin and valley isospins in magic-angle twisted bilayer graphene2. Notably, a resistivity peak appears at high temperatures near a superlattice filling factor of -1, despite no signs of a commensurate correlated phase appearing in the low-temperature limit. Tilted-field magnetotransport and thermodynamic measurements of the in-plane magnetic moment show that the resistivity peak is connected to a finite-field magnetic phase transition3 at which the system develops finite isospin polarization. These data are suggestive of a Pomeranchuk-type mechanism, in which the entropy of disordered isospin moments in the ferromagnetic phase stabilizes the phase relative to an isospin-unpolarized Fermi liquid phase at higher temperatures. We find the entropy, in units of Boltzmann's constant, to be of the order of unity per unit cell area, with a measurable fraction that is suppressed by an in-plane magnetic field consistent with a contribution from disordered spins. In contrast to 3He, however, no discontinuities are observed in the thermodynamic quantities across this transition. Our findings imply a small isospin stiffness4,5, with implications for the nature of finite-temperature electron transport6-8, as well as for the mechanisms underlying isospin ordering and superconductivity9,10 in twisted bilayer graphene and related systems.

5.
Nature ; 598(7881): 429-433, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34469943

RESUMO

Ferromagnetism is most common in transition metal compounds where electrons occupy highly localized d orbitals. However, ferromagnetic order may also arise in low-density two-dimensional electron systems1-5. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene6 drive spontaneous ferromagnetic polarization of the electron system into one or more spin and valley flavours. Using capacitance and transport measurements, we observe a cascade of transitions tuned to the density and electronic displacement field between phases in which quantum oscillations have fourfold, twofold or onefold degeneracy, associated with a spin- and valley-degenerate normal metal, spin-polarized 'half-metal', and spin- and valley-polarized 'quarter-metal', respectively. For electron doping, the salient features of the data are well captured by a phenomenological Stoner model7 that includes valley-anisotropic interactions. For hole filling, we observe a richer phase diagram featuring a delicate interplay of broken symmetries and transitions in the Fermi surface topology. Finally, we introduce a moiré superlattice using a rotationally aligned hexagonal boron nitride substrate5,8. Remarkably, we find that the isospin order is only weakly perturbed, with the moiré potential catalysing the formation of topologically nontrivial gapped states whenever itinerant half- or quarter-metal states occur at half- or quarter-superlattice band filling. Our results show that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory, and reveal magnetism in moiré materials4,5,9,10 to be fundamentally itinerant in nature.

6.
Proc Natl Acad Sci U S A ; 120(36): e2305609120, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639598

RESUMO

An electronic solid with itinerant carriers and localized magnetic moments represents a paradigmatic strongly correlated system. The electrical transport properties associated with the itinerant carriers, as they scatter off these local moments, have been scrutinized across a number of materials. Here, we analyze the transport characteristics associated with ultraclean PdCrO[Formula: see text]-a quasi-two-dimensional material consisting of alternating layers of itinerant Pd-electrons and Mott-insulating CrO[Formula: see text] layers-which shows a pronounced regime of T-linear resistivity over a wide range of intermediate temperatures. By contrasting these observations to the transport properties in a closely related material PdCoO[Formula: see text], where the CoO[Formula: see text] layers are band-insulators, we can rule out the traditional electron-phonon interactions as being responsible for this interesting regime. We propose a previously ignored electron-magneto-elastic interaction between the Pd-electrons, the Cr local moments and an out-of-plane phonon as the main scattering mechanism that leads to the significant enhancement of resistivity and a T-linear regime in PdCrO[Formula: see text] at temperatures far in excess of the magnetic ordering temperature. We suggest a number of future experiments to confirm this picture in PdCrO[Formula: see text] as well as other layered metallic/Mott-insulating materials.

7.
Proc Natl Acad Sci U S A ; 120(36): e2307334120, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639594

RESUMO

The layered delafossite metal PdCrO[Formula: see text] is a natural heterostructure of highly conductive Pd layers Kondo coupled to localized spins in the adjacent Mott insulating CrO[Formula: see text] layers. At high temperatures, T, it has a T-linear resistivity which is not seen in the isostructural but nonmagnetic PdCoO[Formula: see text]. The strength of the Kondo coupling is known, as-grown crystals are extremely high purity and the Fermi surface is both very simple and experimentally known. It is therefore an ideal material platform in which to investigate "Planckian metal" physics. We do this by means of controlled introduction of point disorder, measurement of the thermal conductivity and Lorenz ratio, and studying the sources of its high-temperature entropy. The T-linear resistivity is seen to be due mainly to elastic scattering and to arise from a sum of several scattering mechanisms. Remarkably, this sum leads to a scattering rate within 10[Formula: see text] of the Planckian value of k[Formula: see text]T/[Formula: see text].

8.
Nature ; 569(7754): 89-92, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019303

RESUMO

Majorana zero modes-quasiparticle states localized at the boundaries of topological superconductors-are expected to be ideal building blocks for fault-tolerant quantum computing1,2. Several observations of zero-bias conductance peaks measured by tunnelling spectroscopy above a critical magnetic field have been reported as experimental indications of Majorana zero modes in superconductor-semiconductor nanowires3-8. On the other hand, two-dimensional systems offer the alternative approach of confining Majorana channels within planar Josephson junctions, in which the phase difference φ between the superconducting leads represents an additional tuning knob that is predicted to drive the system into the topological phase at lower magnetic fields than for a system without phase bias9,10. Here we report the observation of phase-dependent zero-bias conductance peaks measured by tunnelling spectroscopy at the end of Josephson junctions realized on a heterostructure consisting of aluminium on indium arsenide. Biasing the junction to φ ≈ π reduces the critical field at which the zero-bias peak appears, with respect to φ = 0. The phase and magnetic-field dependence of the zero-energy states is consistent with a model of Majorana zero modes in finite-size Josephson junctions. As well as providing experimental evidence of phase-tuned topological superconductivity, our devices are compatible with superconducting quantum electrodynamics architectures11 and are scalable to the complex geometries needed for topological quantum computing9,12,13.

9.
Phys Rev Lett ; 132(8): 086501, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457700

RESUMO

In this work we investigate the ground state of a momentum-confined interacting 2D electron gas, a momentum-space analog of an infinite quantum well. The study is performed by combining analytical results with a numerical exact diagonalization procedure. We find a ferromagnetic ground state near a particular electron density and for a range of effective electron (or hole) masses. We argue that this observation may be relevant to the generalized Stoner ferromagnetism recently observed in multilayer graphene systems. The collective magnon excitations exhibit a linear dispersion, which originates from a diverging spin stiffness.

10.
Phys Rev Lett ; 132(23): 236501, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905644

RESUMO

We study a controlled large-N theory of electrons coupled to dynamical two-level systems (TLSs) via spatially random interactions. Such a physical situation arises when electrons scatter off low-energy excitations in a metallic glass, such as a charge or stripe glass. Our theory is governed by a non-Gaussian saddle point, which maps to the celebrated spin-boson model. By tuning the coupling strength we find that the model crosses over from a Fermi liquid at weak coupling to an extended region of non-Fermi liquid behavior at strong coupling, and realizes a marginal Fermi liquid at the crossover. Our results are valid for generic space dimensions d>1.

11.
Phys Rev Lett ; 132(26): 266501, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996276

RESUMO

The two-dimensional electron gas is of fundamental importance in quantum many-body physics. We study a minimal extension of this model with C_{4} (as opposed to full rotational) symmetry and an electronic dispersion with two valleys with anisotropic effective masses. Electrons in our model interact via Coulomb repulsion, screened by distant metallic gates. Using variational Monte Carlo simulations, we find a broad intermediate range of densities with a metallic valley-polarized, spin-unpolarized ground state. Our results are of direct relevance to the recently discovered "nematic" state in AlAs quantum wells. For the effective mass anisotropy relevant to this system, m_{x}/m_{y}≈5.2, we obtain a transition from an anisotropic metal to a valley-polarized metal at r_{s}≈12 (where r_{s} is the dimensionless Wigner-Seitz radius). At still lower densities, we find a (possibly metastable) valley and spin-polarized state with a reduced electronic anisotropy.

13.
Phys Rev Lett ; 131(5): 056501, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595239

RESUMO

Determinant quantum Monte Carlo (DQMC) is a powerful numerical technique to study many-body fermionic systems. In recent years, several classes of sign-free (SF) models have been discovered, where the notorious sign problem can be circumvented. However, it is not clear what the inherent physical characteristics and limitations of SF models are. In particular, which zero-temperature quantum phases of matter are accessible within such models, and which are fundamentally inaccessible? Here, we show that a model belonging to any of the known SF classes within DQMC cannot have a stable Fermi-liquid ground state in spatial dimension d≥2, unless the antiunitary symmetry that prevents the sign problem is spontaneously broken (for which there are currently no known examples in SF models). For SF models belonging to one of the symmetry classes (where the absence of the sign problem follows from a combination of nonunitary symmetries of the fermionic action), any putative Fermi liquid fixed point generically includes an attractive Cooper-like interaction that destabilizes it. In the recently discovered lower-symmetry classes of SF models, the Fermi surface (FS) is generically unstable even at the level of the quadratic action. Our results suggest a fundamental link between Fermi liquids and the fermion sign problem. Interestingly, our results do not rule out a non-Fermi-liquid ground state with a FS in a sign-free model.

14.
Phys Rev Lett ; 130(22): 226001, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327441

RESUMO

Predicting the fate of an interacting system in the limit where the electronic bandwidth is quenched is often highly nontrivial. The complex interplay between interactions and quantum fluctuations driven by the band geometry can drive competition between various ground states, such as charge density wave order and superconductivity. In this work, we study an electronic model of topologically trivial flat bands with a continuously tunable Fubini-Study metric in the presence of on-site attraction and nearest-neighbor repulsion, using numerically exact quantum Monte Carlo simulations. By varying the electron filling and the minimal spatial extent of the localized flat-band Wannier wave functions, we obtain a number of intertwined orders. These include a phase with coexisting charge density wave order and superconductivity, i.e., a supersolid. In spite of the nonperturbative nature of the problem, we identify an analytically tractable limit associated with a "small" spatial extent of the Wannier functions and derive a low-energy effective Hamiltonian that can well describe our numerical results. We also provide unambiguous evidence for the violation of any putative lower bound on the zero-temperature superfluid stiffness in geometrically nontrivial flat bands.


Assuntos
Elétrons , Supercondutividade , Análise por Conglomerados , Método de Monte Carlo , Temperatura
16.
Proc Natl Acad Sci U S A ; 117(6): 2852-2857, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980534

RESUMO

The bilayer perovskite Sr3Ru2O7 has been widely studied as a canonical strange metal. It exhibits T-linear resistivity and a T log(1/T) electronic specific heat in a field-tuned quantum critical fan. Criticality is known to occur in "hot" Fermi pockets with a high density of states close to the Fermi energy. We show that while these hot pockets occupy a small fraction of the Brillouin zone, they are responsible for the anomalous transport and thermodynamics of the material. Specifically, a scattering process in which two electrons from the large, "cold" Fermi surfaces scatter into one hot and one cold electron renders the ostensibly noncritical cold fermions a marginal Fermi liquid. From this fact the transport and thermodynamic phase diagram is reproduced in detail. Finally, we show that the same scattering mechanism into hot electrons that are instead localized near a 2D van Hove singularity explains the anomalous transport observed in strained Sr2RuO4.

17.
Phys Rev Lett ; 128(5): 056801, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179934

RESUMO

We consider the stability of fragile topological bands protected by space-time inversion symmetry in the presence of strong electron-electron interactions. At the single-particle level, the topological nature of the bands prevents the opening of a gap between them. In contrast, we show that when the fragile bands are half filled, interactions can open a gap in the many-body spectrum without breaking any symmetry or mixing degrees of freedom from remote bands. Furthermore, the resulting ground state is not topologically ordered. Thus, a fragile topological band structure does not present an obstruction to forming a "featureless insulator" ground state. Our construction relies on the formation of fermionic bound states of two electrons and one hole known as "trions." The trions form a band whose coupling to the electronic band enables the gap opening. This result may be relevant to the gapped state indicated by recent experiments in magic angle twisted bilayer graphene at charge neutrality.

18.
Phys Rev Lett ; 128(12): 127702, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394315

RESUMO

In one-dimensional topological superconductors driven periodically with the frequency ω, two types of topological edge modes may appear, the well-known Majorana zero mode and a Floquet Majorana mode located at the quasienergy ℏω/2. We investigate two Josephson-coupled topological quantum wires in the presence of Coulomb interactions, forming a so-called Majorana box qubit. An oscillating gate voltage can induce Floquet Majorana modes in both wires. This allows for the encoding of three qubits in a sector with fixed electron parity. If such a system is prepared by increasing the amplitude of oscillations adiabatically, it is inherently unstable as interactions resonantly create quasiparticles. This can be avoided by using instead a protocol where the oscillation frequency is increased slowly. In this case, one can find a parameter regime where the system remains stable.

19.
Phys Rev Lett ; 127(24): 247001, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951779

RESUMO

We show that in a two-dimensional electron gas with an annular Fermi surface, long-range Coulomb interactions can lead to unconventional superconductivity by the Kohn-Luttinger mechanism. Superconductivity is strongly enhanced when the inner and outer Fermi surfaces are close to each other. The most prevalent state has chiral p-wave symmetry, but d-wave and extended s-wave pairing are also possible. We discuss these results in the context of rhombohedral trilayer graphene, where superconductivity was recently discovered in regimes where the normal state has an annular Fermi surface. Using realistic parameters, our mechanism can account for the order of magnitude of T_{c}, as well as its trends as a function of electron density and perpendicular displacement field. Moreover, it naturally explains some of the outstanding puzzles in this material, that include the weak temperature dependence of the resistivity above T_{c}, and the proximity of spin singlet superconductivity to the ferromagnetic phase.

20.
Phys Rev Lett ; 127(24): 247703, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951791

RESUMO

We introduce and analyze a model that sheds light on the interplay between correlated insulating states, superconductivity, and flavor-symmetry breaking in magic angle twisted bilayer graphene. Using a variational mean-field theory, we determine the normal-state phase diagram of our model as a function of the band filling. The model features robust insulators at even integer fillings, occasional weaker insulators at odd integer fillings, and a pattern of flavor-symmetry breaking at noninteger fillings. Adding a phonon-mediated intervalley retarded attractive interaction, we obtain strong-coupling superconducting domes, whose structure is in qualitative agreement with experiments. Our model elucidates how the intricate form of the interactions and the particle-hole asymmetry of the electronic structure determine the phase diagram. It also explains how subtle differences between devices may lead to the different behaviors observed experimentally. A similar model can be applied with minor modifications to other moiré systems, such as twisted trilayer graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA