Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 596(7873): 583-589, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265844

RESUMO

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1-4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence-the structure prediction component of the 'protein folding problem'8-has been an important open research problem for more than 50 years9. Despite recent progress10-14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.


Assuntos
Redes Neurais de Computação , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Biologia Computacional/métodos , Biologia Computacional/normas , Bases de Dados de Proteínas , Aprendizado Profundo/normas , Modelos Moleculares , Reprodutibilidade dos Testes , Alinhamento de Sequência
2.
Proteins ; 89(12): 1711-1721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599769

RESUMO

We describe the operation and improvement of AlphaFold, the system that was entered by the team AlphaFold2 to the "human" category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is entirely different to the one entered in CASP13. It used a novel end-to-end deep neural network trained to produce protein structures from amino acid sequence, multiple sequence alignments, and homologous proteins. In the assessors' ranking by summed z scores (>2.0), AlphaFold scored 244.0 compared to 90.8 by the next best group. The predictions made by AlphaFold had a median domain GDT_TS of 92.4; this is the first time that this level of average accuracy has been achieved during CASP, especially on the more difficult Free Modeling targets, and represents a significant improvement in the state of the art in protein structure prediction. We reported how AlphaFold was run as a human team during CASP14 and improved such that it now achieves an equivalent level of performance without intervention, opening the door to highly accurate large-scale structure prediction.


Assuntos
Modelos Moleculares , Redes Neurais de Computação , Dobramento de Proteína , Proteínas , Software , Sequência de Aminoácidos , Biologia Computacional , Aprendizado Profundo , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA