Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257592

RESUMO

The contemporary monitoring of cerebrovascular reactivity (CVR) relies on invasive intracranial pressure (ICP) monitoring which limits its application. Interest is shifting towards near-infrared spectroscopic regional cerebral oxygen saturation (rSO2)-based indices of CVR which are less invasive and have improved spatial resolution. This study aims to examine and model the relationship between ICP and rSO2-based indices of CVR. Through a retrospective cohort study of prospectively collected physiologic data in moderate to severe traumatic brain injury (TBI) patients, linear mixed effects modeling techniques, augmented with time-series analysis, were utilized to evaluate the ability of rSO2-based indices of CVR to model ICP-based indices. It was found that rSO2-based indices of CVR had a statistically significant linear relationship with ICP-based indices, even when the hierarchical and autocorrelative nature of the data was accounted for. This strengthens the body of literature indicating the validity of rSO2-based indices of CVR and potential greatly expands the scope of CVR monitoring.


Assuntos
Pressão Intracraniana , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Estudos Retrospectivos , Projetos de Pesquisa , Tecnologia
2.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474990

RESUMO

The modeling and forecasting of cerebral pressure-flow dynamics in the time-frequency domain have promising implications for veterinary and human life sciences research, enhancing clinical care by predicting cerebral blood flow (CBF)/perfusion, nutrient delivery, and intracranial pressure (ICP)/compliance behavior in advance. Despite its potential, the literature lacks coherence regarding the optimal model type, structure, data streams, and performance. This systematic scoping review comprehensively examines the current landscape of cerebral physiological time-series modeling and forecasting. It focuses on temporally resolved cerebral pressure-flow and oxygen delivery data streams obtained from invasive/non-invasive cerebral sensors. A thorough search of databases identified 88 studies for evaluation, covering diverse cerebral physiologic signals from healthy volunteers, patients with various conditions, and animal subjects. Methodologies range from traditional statistical time-series analysis to innovative machine learning algorithms. A total of 30 studies in healthy cohorts and 23 studies in patient cohorts with traumatic brain injury (TBI) concentrated on modeling CBFv and predicting ICP, respectively. Animal studies exclusively analyzed CBF/CBFv. Of the 88 studies, 65 predominantly used traditional statistical time-series analysis, with transfer function analysis (TFA), wavelet analysis, and autoregressive (AR) models being prominent. Among machine learning algorithms, support vector machine (SVM) was widely utilized, and decision trees showed promise, especially in ICP prediction. Nonlinear models and multi-input models were prevalent, emphasizing the significance of multivariate modeling and forecasting. This review clarifies knowledge gaps and sets the stage for future research to advance cerebral physiologic signal analysis, benefiting neurocritical care applications.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA