Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Blood Press ; 29(2): 123-134, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31718316

RESUMO

Purpose: Until recently, it has been believed that donating a kidney not represents any risk for development of cardiovascular disease. However, a recent Norwegian epidemiological study suggests that kidney donors have an increased long-term risk of cardiovascular mortality. The pathophysiological mechanisms linking reduced kidney function to cardiovascular disease are not known. Living kidney donors are screened for cardiovascular morbidity before unilateral nephrectomy, and are left with mildly reduced glomerular filtration rate (GFR) after donation. Therefore, they represent an unique model for investigating the pathogenesis linking reduced GFR to cardiovascular disease and cardiovascular remodelling. We present the study design of Cardiovascular rEmodelling in living kidNey donorS with reduced glomerular filtration rate (CENS), which is an investigator-initiated prospective observational study on living kidney donors. The hypothesis is that living kidney donors develop cardiovascular remodelling due to a reduction of GFR.Materials and methods: 60 living kidney donors and 60 age and sex matched healthy controls will be recruited. The controls will be evaluated to fulfil the Norwegian transplantation protocol for living kidney donors. Investigations will be performed at baseline and after 1, 3, 6 and 10 years in both groups. The investigations include cardiac magnetic resonance imaging, echocardiography, bone density scan, flow mediated dilatation, laser Doppler flowmetry, nailfold capillaroscopy, office blood pressure, 24-h ambulatory blood pressure, heart rate variability and investigation of microbiota and biomarkers for inflammation, cardiovascular risk and the calcium-phosphate metabolism.Conclusions: The present study seeks to provide new insight in the pathophysiological mechanisms linking reduced kidney function to cardiovascular disease. In addition, we aim to enlighten predictors of adverse cardiovascular outcome in living kidney donors. The study is registered at Clinical-Trials.gov (identifier: NCT03729557).


Assuntos
Doenças Cardiovasculares/fisiopatologia , Taxa de Filtração Glomerular , Nefropatias/fisiopatologia , Transplante de Rim , Rim/fisiopatologia , Doadores Vivos , Nefrectomia/efeitos adversos , Remodelação Vascular , Remodelação Ventricular , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Estudos de Casos e Controles , Humanos , Nefropatias/diagnóstico , Nefropatias/etiologia , Estudos Longitudinais , Noruega , Estudos Prospectivos , Projetos de Pesquisa , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
2.
Cardiovasc Res ; 119(10): 1915-1927, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216909

RESUMO

AIMS: Heart failure is a condition with high mortality rates, and there is a lack of therapies that directly target maladaptive changes in the extracellular matrix (ECM), such as fibrosis. We investigated whether the ECM enzyme known as A disintegrin and metalloprotease with thrombospondin motif (ADAMTS) 4 might serve as a therapeutic target in treatment of heart failure and cardiac fibrosis. METHODS AND RESULTS: The effects of pharmacological ADAMTS4 inhibition on cardiac function and fibrosis were examined in rats exposed to cardiac pressure overload. Disease mechanisms affected by the treatment were identified based on changes in the myocardial transcriptome. Following aortic banding, rats receiving an ADAMTS inhibitor, with high inhibitory capacity for ADAMTS4, showed substantially better cardiac function than vehicle-treated rats, including ∼30% reduction in E/e' and left atrial diameter, indicating an improvement in diastolic function. ADAMTS inhibition also resulted in a marked reduction in myocardial collagen content and a down-regulation of transforming growth factor (TGF)-ß target genes. The mechanism for the beneficial effects of ADAMTS inhibition was further studied in cultured human cardiac fibroblasts producing mature ECM. ADAMTS4 caused a 50% increase in the TGF-ß levels in the medium. Simultaneously, ADAMTS4 elicited a not previously known cleavage of TGF-ß-binding proteins, i.e. latent-binding protein of TGF-ß and extra domain A-fibronectin. These effects were abolished by the ADAMTS inhibitor. In failing human hearts, we observed a marked increase in ADAMTS4 expression and cleavage activity. CONCLUSION: Inhibition of ADAMTS4 improves cardiac function and reduces collagen accumulation in rats with cardiac pressure overload, possibly through a not previously known cleavage of molecules that control TGF-ß availability. Targeting ADAMTS4 may serve as a novel strategy in heart failure treatment, in particular, in heart failure with fibrosis and diastolic dysfunction.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Ratos , Humanos , Animais , Desintegrinas/metabolismo , Desintegrinas/farmacologia , Miocárdio/metabolismo , Insuficiência Cardíaca/metabolismo , Cardiomiopatias/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Trombospondinas/metabolismo , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Fibrose
3.
ESC Heart Fail ; 8(2): 918-927, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497525

RESUMO

AIMS: Sacubitril/valsartan (sac/val) has shown superior effect compared with blockade of the renin-angiotensin-aldosterone system in heart failure with reduced ejection fraction. We aimed to investigate effects of sac/val compared with valsartan in a pressure overload model of heart failure with preserved ejection fraction (HFpEF). METHODS AND RESULTS: Sprague-Dawley rats underwent aortic banding or sham (n = 16) surgery and were randomized to sac/val (n = 28), valsartan (n = 29), or vehicle (n = 26) treatment for 8 weeks. Sac/val reduced left ventricular weight by 11% compared with vehicle (P = 0.01) and 9% compared with valsartan alone (P = 0.04). Only valsartan reduced blood pressure compared with sham (P = 0.02). Longitudinal early diastolic strain rate was preserved in sac/val compared with sham, while it was reduced by 23% in vehicle (P = 0.03) and 24% in valsartan (P = 0.02). Diastolic dysfunction, measured by E/e'SR, increased by 68% in vehicle (P < 0.01) and 80% in valsartan alone (P < 0.001), while sac/val showed no increase. Neither sac/val nor valsartan prevented interstitial fibrosis. Although ejection fraction was preserved, we observed mild systolic dysfunction, with vehicle showing a 28% decrease in longitudinal strain (P < 0.01). Neither sac/val nor valsartan treatment improved this dysfunction. CONCLUSIONS: In a model of HFpEF induced by cardiac pressure overload, sac/val reduced hypertrophy compared with valsartan alone and ameliorated diastolic dysfunction. These effects were independent of blood pressure. Early systolic dysfunction was not affected, supporting the notion that sac/val has the largest potential in conditions characterized by reduced ejection fraction. Observed anti-hypertrophic effects in preserved ejection fraction implicate potential benefit of sac/val in the clinical setting of hypertrophic remodelling and impaired diastolic function.


Assuntos
Insuficiência Cardíaca , Aminobutiratos , Animais , Compostos de Bifenilo , Cardiomegalia , Combinação de Medicamentos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Ratos , Ratos Sprague-Dawley , Volume Sistólico , Valsartana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA