Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 627(8003): 328-334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480966

RESUMO

As airborne methane surveys of oil and gas systems continue to discover large emissions that are missing from official estimates1-4, the true scope of methane emissions from energy production has yet to be quantified. We integrate approximately one million aerial site measurements into regional emissions inventories for six regions in the USA, comprising 52% of onshore oil and 29% of gas production over 15 aerial campaigns. We construct complete emissions distributions for each, employing empirically grounded simulations to estimate small emissions. Total estimated emissions range from 0.75% (95% confidence interval (CI) 0.65%, 0.84%) of covered natural gas production in a high-productivity, gas-rich region to 9.63% (95% CI 9.04%, 10.39%) in a rapidly expanding, oil-focused region. The six-region weighted average is 2.95% (95% CI 2.79%, 3.14%), or roughly three times the national government inventory estimate5. Only 0.05-1.66% of well sites contribute the majority (50-79%) of well site emissions in 11 out of 15 surveys. Ancillary midstream facilities, including pipelines, contribute 18-57% of estimated regional emissions, similarly concentrated in a small number of point sources. Together, the emissions quantified here represent an annual loss of roughly US$1 billion in commercial gas value and a US$9.3 billion annual social cost6. Repeated, comprehensive, regional remote-sensing surveys offer a path to detect these low-frequency, high-consequence emissions for rapid mitigation, incorporation into official emissions inventories and a clear-eyed assessment of the most effective emission-finding technologies for a given region.

2.
Environ Sci Technol ; 56(7): 4317-4323, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35317555

RESUMO

Limiting emissions of climate-warming methane from oil and gas (O&G) is a major opportunity for short-term climate benefits. We deploy a basin-wide airborne survey of O&G extraction and transportation activities in the New Mexico Permian Basin, spanning 35 923 km2, 26 292 active wells, and over 15 000 km of natural gas pipelines using an independently validated hyperspectral methane point source detection and quantification system. The airborne survey repeatedly visited over 90% of the active wells in the survey region throughout October 2018 to January 2020, totaling approximately 98 000 well site visits. We estimate total O&G methane emissions in this area at 194 (+72/-68, 95% CI) metric tonnes per hour (t/h), or 9.4% (+3.5%/-3.3%) of gross gas production. 50% of observed emissions come from large emission sources with persistence-averaged emission rates over 308 kg/h. The fact that a large sample size is required to characterize the heavy tail of the distribution emphasizes the importance of capturing low-probability, high-consequence events through basin-wide surveys when estimating regional O&G methane emissions.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Metano/análise , Gás Natural/análise , New Mexico , Poços de Água
3.
Am J Physiol Endocrinol Metab ; 314(2): E124-E130, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978547

RESUMO

When the doubly labeled water (DLW) method is used to measure total daily energy expenditure (TDEE), isotope measurements are typically performed using isotope ratio mass spectrometry (IRMS). New technologies, such as off-axis integrated cavity output spectroscopy (OA-ICOS) provide comparable isotopic measurements of standard waters and human urine samples, but the accuracy of carbon dioxide production (V̇co2) determined with OA-ICOS has not been demonstrated. We compared simultaneous measurement V̇co2 obtained using whole-room indirect calorimetry (IC) with DLW-based measurements from IRMS and OA-ICOS. Seventeen subjects (10 female; 22 to 63 yr) were studied for 7 consecutive days in the IC. Subjects consumed a dose of 0.25 g H218O (98% APE) and 0.14 g 2H2O (99.8% APE) per kilogram of total body water, and urine samples were obtained on days 1 and 8 to measure average daily V̇co2 using OA-ICOS and IRMS. V̇co2 was calculated using both the plateau and intercept methods. There were no differences in V̇co2 measured by OA-ICOS or IRMS compared with IC when the plateau method was used. When the intercept method was used, V̇co2 using OA-ICOS did not differ from IC, but V̇co2 measured using IRMS was significantly lower than IC. Accuracy (~1-5%), precision (~8%), intraclass correlation coefficients ( R = 0.87-90), and root mean squared error (30-40 liters/day) of V̇co2 measured by OA-ICOS and IRMS were similar. Both OA-ICOS and IRMS produced measurements of V̇co2 with comparable accuracy and precision compared with IC.


Assuntos
Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Isótopos de Oxigênio/química , Troca Gasosa Pulmonar , Água/química , Adulto , Calorimetria Indireta/métodos , Deutério/química , Deutério/urina , Metabolismo Energético , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isótopos de Oxigênio/urina , Troca Gasosa Pulmonar/fisiologia , Análise Espectral/métodos , Adulto Jovem
4.
Anal Chem ; 85(21): 10392-8, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24032448

RESUMO

Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant (17)O isotope in addition to (2)H and (18)O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements δ(18)O, δ(17)O, and (17)O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard Greenland Ice Sheet Precipitation (GISP) demonstrate the precision and accuracy of OA-ICOS: δ(18)OVSMOW-SLAP = -24.74 ± 0.07‰ (1σ) and δ(17)OVSMOW-SLAP = -13.12 ± 0.05‰ (1σ). For comparison, the International Atomic Energy Agency (IAEA) value for δ(18)OVSMOW-SLAP is -24.76 ± 0.09‰ (1σ) and an average of previously reported values for δ(17)OVSMOW-SLAP is -13.12 ± 0.06‰ (1σ). Multiple (26) high-precision measurements of GISP provide a (17)O-excessVSMOW-SLAP of 23 ± 10 per meg (1σ); an average of previously reported values for (17)O-excessVSMOW-SLAP is 22 ± 11 per meg (1σ). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in δ(18)O, δ(17)O, and (17)O-excess. The ability to measure accurately δ(18)O, δ(17)O, and (17)O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of δ(17)O and (17)O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others.


Assuntos
Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise , Reprodutibilidade dos Testes
5.
Anal Chem ; 84(22): 9768-73, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23075099

RESUMO

The stable isotopes of hydrogen (δ(2)H) and oxygen (δ(18)O) in human urine are measured during studies of total energy expenditure by the doubly labeled water method, measurement of total body water, and measurement of insulin resistance by glucose disposal among other applications. An ultrasensitive laser absorption spectrometer based on off-axis integrated cavity output spectroscopy was demonstrated for simple and inexpensive measurement of stable isotopes in natural isotopic abundance and isotopically enriched human urine. Preparation of urine for analysis was simple and rapid (approximately 25 samples per hour), requiring no decolorizing or distillation steps. Analysis schemes were demonstrated to address sample-to-sample memory while still allowing analysis of 45 natural or 30 enriched urine samples per day. The instrument was linear over a wide range of water isotopes (δ(2)H = -454 to +1702 ‰ and δ(18)O = -58.3 to +265 ‰). Measurements of human urine were precise to better than 0.65 ‰ 1σ for δ(2)H and 0.09 ‰ 1σ for δ(18)O for natural urines, 1.1 ‰ 1σ for δ(2)H and 0.13 ‰ 1σ for δ(18)O for low enriched urines, and 1.0 ‰ 1σ for δ(2)H and 0.08 ‰ 1σ for δ(18)O for high enriched urines. Furthermore, the accuracy of the isotope measurements of human urines was verified to better than ±0.81 ‰ in δ(2)H and ±0.13 ‰ in δ(18)O (average deviation) against three independent isotope-ratio mass spectrometry laboratories. The ability to immediately and inexpensively measure the stable isotopes of water in human urine is expected to increase the number and variety of experiments which can be undertaken.


Assuntos
Hidrogênio/urina , Lasers , Análise Espectral , Urinálise/métodos , Humanos , Modelos Lineares , Isótopos de Oxigênio/urina , Reprodutibilidade dos Testes
6.
Cell Rep Med ; 2(2): 100203, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33665639

RESUMO

The doubly labeled water (DLW) method measures total energy expenditure (TEE) in free-living subjects. Several equations are used to convert isotopic data into TEE. Using the International Atomic Energy Agency (IAEA) DLW database (5,756 measurements of adults and children), we show considerable variability is introduced by different equations. The estimated rCO2 is sensitive to the dilution space ratio (DSR) of the two isotopes. Based on performance in validation studies, we propose a new equation based on a new estimate of the mean DSR. The DSR is lower at low body masses (<10 kg). Using data for 1,021 babies and infants, we show that the DSR varies non-linearly with body mass between 0 and 10 kg. Using this relationship to predict DSR from weight provides an equation for rCO2 over this size range that agrees well with indirect calorimetry (average difference 0.64%; SD = 12.2%). We propose adoption of these equations in future studies.


Assuntos
Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Isótopos de Oxigênio/metabolismo , Água , Calorimetria Indireta/métodos , Deutério/metabolismo , Humanos
7.
Eur J Clin Nutr ; 74(3): 454-464, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427762

RESUMO

BACKGROUND/OBJECTIVES: The doubly labeled water (DLW) method is the gold standard methodology for determination of free-living, total daily energy expenditure (TEE). However, there is no single accepted approach for either the sampling protocols (daily vs. two-point, in which samples are collected after dosing and at the end of the measurement period) or the calculations used in the determination of the rate of carbon dioxide production (rCO2) and TEE. Moreover, fluctuations in natural background abundances introduce error in the calculation of rCO2 and TEE. The advent of new technologies makes feasible the possibility of including additional isotope measures (17O) to account for background variation, which may improve accuracy. SUBJECTS/METHODS: Sixteen subjects were studied for 7 consecutive days in a whole-room indirect calorimeter (IC) with concurrent measurement of TEE by DLW. Daily urine samples were obtained and isotope ratios were determined using off-axis integrated cavity output spectroscopy (OA-ICOS). RESULTS: We determined the best combination of approaches for estimating dilution spaces and elimination rates and calculated average daily volume of carbon dioxide production (VCO2) using six different published equations. Using this best combination, multi-point fitting of isotope elimination rates using the daily urine samples substantially improved the average precision (4.5% vs. 6.0%) and accuracy (-0.5% vs. -3.0%) compared with the two-point method. This improvement may partly reflect the less variable day-to-day chamber measurements of energy expenditure. Utilizing 17O measurements to correct for errors due to background isotope fluctuations provided additional but minor improvements in precision (4.2% vs. 4.5%) and accuracy (0.2% vs. 0.5%). CONCLUSIONS: This work shows that optimizing sampling and calculation protocols can improve the accuracy and precision of DLW measurements.


Assuntos
Metabolismo Energético , Água , Deutério , Humanos , Isótopos de Oxigênio , Análise Espectral
8.
J Am Soc Mass Spectrom ; 19(8): 1230-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18565760

RESUMO

Characterizing chemical changes within individual cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Analyzing biological systems with imaging and profiling mass spectrometry (MS) has gained popularity in recent years as a method for creating chemical maps of biological samples. To obtain mass spectra that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell culture components are removed from the cell surface and that the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging/profiling MS that removes the majority of the interfering species derived from the cellular growth medium, preserves the basic morphology of the cells, and allows chemical profiling of the diffusible elements of the cytosol. Using this method, we are able to reproducibly analyze cells from three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique makes possible routine imaging/profiling MS analysis of individual cultured cells, allowing for understanding of molecular processes within individual cells.


Assuntos
Separação Celular/métodos , Células/química , Animais , Linhagem Celular Tumoral , Proliferação de Células , Criopreservação , Humanos , Indicadores e Reagentes , Espectrometria de Massas , Reprodutibilidade dos Testes , Soluções
9.
Rev Sci Instrum ; 83(4): 044305, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22559556

RESUMO

Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ(2)H and δ(18)O measurement errors (Δδ(2)H and Δδ(18)O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m(BB), and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m(NB). These metrics are used to correct for Δδ(2)H and Δδ(18)O. The method was tested on 14 instruments and Δδ(18)O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ(2)H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m(NB). Using the isotope error versus m(NB) and m(BB) curves, Δδ(2)H and Δδ(18)O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 [per thousand] and 0.25 [per thousand] respectively, while Δδ(2)H and Δδ(18)O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 [per thousand] and 0.22 [per thousand]. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.


Assuntos
Análise Espectral/métodos , Água/química , Hidrogênio/química , Isótopos de Oxigênio/química
10.
Methods Mol Biol ; 656: 253-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20680596

RESUMO

Characterizing the molecular contents of individual cells is critical for understanding fundamental mechanisms of biological processes. Imaging mass spectrometry (IMS) of biological systems has been steadily gaining popularity for its ability to create precise chemical images of biological samples, thereby revealing new biological insights and improving understanding of disease. In order to acquire mass spectral images from single cells that contain relevant molecular information, samples must be prepared such that cell-culture components, especially salts, are eliminated from the cell surface and that the cell contents are accessible to the mass spectrometer. We have demonstrated a cellular preparation technique for IMS that preserves the basic morphology of cultured cells, allows mass spectrometric chemical profiling of cytosol, and removes the majority of the interfering species derived from the cellular growth medium. Using this protocol, we achieve high-quality, reproducible IMS images from three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation method allows rapid and routine IMS analysis of cultured cells, making possible a wide variety of experiments to further scientific understanding of molecular processes within individual cells.


Assuntos
Diagnóstico por Imagem/métodos , Espectrometria de Massas/métodos , Animais , Linhagem Celular , Proliferação de Células , Cães , Humanos , Camundongos , Células NIH 3T3
11.
J Phys Chem B ; 114(30): 9729-36, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20617846

RESUMO

Radiation-induced degradation of polymeric materials occurs through numerous, simultaneous, competing chemical reactions. Although degradation is typically found to be linear in adsorbed dose, some silicone materials exhibit nonlinear dose dependence due to dose-dependent dominant degradation pathways. We have characterized the effects of radiative and thermal degradation on a model filled-PDMS system, Sylgard 184 (commonly used in electronic encapsulation and in biomedical applications), using traditional mechanical testing, NMR spectroscopy, and sample headspace analysis using solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry (GC/MS). The mechanical data and (1)H spin-echo NMR spectra indicated that radiation exposure leads to predominantly cross-linking over the cumulative dose range studied (0-250 kGy) with a rate roughly linear with dose. (1)H multiple-quantum NMR spectroscopy detected a bimodal distribution in the network structure, as expected from the proposed structure of Sylgard 184. The MQ NMR spectra further indicated that the radiation-induced structural changes were not linear in adsorbed dose and that competing chain scission mechanisms made a greater contribution to the overall degradation process in the range of 50-100 kGy (although cross-linking still dominated). The SPME-GC/MS data were analyzed using principal component analysis (PCA), which identified subtle changes in the distributions of degradation products (the cyclic siloxanes and other components of the material) as a function of age that provide insight into the dominant degradation pathways at low and high adsorbed dose.

12.
Anal Chem ; 78(18): 6497-503, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16970326

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is utilized to examine the mass spectra and fragmentation patterns of seven isomeric monosaccharides. Multivariate statistical analysis techniques, including principal component analysis (PCA), allow discrimination of the extremely similar mass spectra of stereoisomers. Furthermore, PCA identifies those fragment peaks that vary significantly between spectra. Heavy isotope studies confirm that these peaks are indeed sugar fragments, allow identification of the fragments, and provide clues to the fragmentation pathways. Excellent reproducibility is shown by multiple experiments performed over time and on separate samples. This study demonstrates the combined selectivity and discrimination power of TOF-SIMS and PCA and suggests new applications of the technique including differentiation of subtle chemical changes in biological samples that may provide insights into cellular processes, disease progress, and disease diagnosis.


Assuntos
Espectrometria de Massas/métodos , Monossacarídeos/química , Análise de Componente Principal , Reprodutibilidade dos Testes , Estereoisomerismo
13.
Anal Chem ; 78(11): 3651-8, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16737220

RESUMO

We use time-of-flight secondary ion mass spectrometry (TOF-SIMS) to image and classify individual cells on the basis of their characteristic mass spectra. Using statistical data reduction on the large data sets generated during TOF-SIMS analysis, similar biological materials can be differentiated on the basis of a combination of small changes in protein expression, metabolic activity and cell structure. We apply this powerful technique to image and differentiate three carcinoma-derived human breast cancer cell lines (MCF-7, T47D, and MDA-MB-231). In homogenized cells, we show the ability to differentiate the cell types as well as cellular compartments (cytosol, nuclear, and membrane). These studies illustrate the capacity of TOF-SIMS to characterize individual cells by chemical composition, which could ultimately be applied to detect and identify single aberrant cells within a normal cell population. Ultimately, we anticipate characterizing rare chemical changes that may provide clues to single cell progression within carcinogenic and metastatic pathways.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Espectrometria de Massa de Íon Secundário/métodos , Aminoácidos/química , Neoplasias da Mama/química , Linhagem Celular Tumoral , Humanos , Proteínas/química , Fatores de Tempo
14.
Anal Chem ; 74(7): 1741-3, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12033270

RESUMO

Cavity ring-down spectroscopy is applied to the liquid phase by placing the target solution directly into the optical cavity. We demonstrate that solutions in the cavity can be stirred and more importantly monitored in a flow. We report a minimum detectable absorption of 10(-6) cm(-1) for a range of organic solvents. This detection limit corresponds to picomolar concentrations for strong absorbers.

15.
J Am Chem Soc ; 125(5): 1158-9, 2003 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-12553804

RESUMO

The kinetics of methylene blue reduction by ascorbic acid in acetonitrile was investigated by cavity ring-down spectroscopy. Because of our high sensitivity we were able to use very low concentrations (1-10 nM) of the dye. Under these conditions, we observed a second-order loss of dye as well as a competing back reaction with dissolved oxygen. The use of an inexpensive diode laser and a relatively simple setup should make ultratrace kinetic studies more accessible.


Assuntos
Azul de Metileno/análogos & derivados , Azul de Metileno/química , Acetonitrilas/química , Ácido Ascórbico/química , Cinética , Lasers , Óptica e Fotônica/instrumentação , Oxirredução , Sensibilidade e Especificidade , Análise Espectral
16.
Inorg Chem ; 43(5): 1735-42, 2004 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-14989666

RESUMO

The complex Ru(dipa)(2)(2+) (dipa = di-2-pyridylmethanamine) has been prepared, yielding approximately a statistical ratio of the meso and rac isomers. The electronic spectra of both isomers show pyridyl pi --> pi transitions in the UV region and MLCT bands in the visible region. The solvent dependence of the spectra provides evidence of hydrogen bond formation between the solvent and the NH(2) site on the ligand. The electrochemical properties of the two isomers are identical; each undergoes a reversible one-electron oxidation in acetonitrile (E(1/2) = 0.933 V vs Ag/AgCl) and in aqueous solution below pH 3 (E(1/2) = 0.786 V vs Ag/AgCl). In aqueous solution above pH 3, one-electron oxidation of the ruthenium center is followed by deprotonation of the ligand NH(2) site yielding a reactive amidoruthenium(III) species. The ruthenium-bound dipa ligand possesses structural constraints that prevent the usual oxidative dehydrogenation reaction, which would yield exclusively the corresponding imine. Instead the amidoruthenium(III) intermediate finds alternative reaction routes leading to multiple products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA